Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T22:02:05.790Z Has data issue: false hasContentIssue false

New bounds on the sedimentation velocity for hard, charged and adhesive hard-sphere colloids

Published online by Cambridge University Press:  14 January 2011

W. TODD GILLELAND
Affiliation:
Department of Chemical Engineering, Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
SALVATORE TORQUATO
Affiliation:
Department of Physics, Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
WILLIAM B. RUSSEL*
Affiliation:
Department of Chemical Engineering, Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

The sedimentation velocity of colloidal dispersions is known from experiment and theory at dilute concentrations to be quite sensitive to the interparticle potential with attractions/repulsions increasing/decreasing the rate significantly at intermediate volume fractions. Since the differences necessarily disappear at close packing, this implies a substantial maximum in the rate for attractions. This paper describes the derivation of a robust upper bound on the velocity that reflects these trends quantitatively and motivates wider application of a simple theory formulated for hard spheres. The treatment pertains to sedimentation velocities slow enough that Brownian motion sustains an equilibrium microstructure without large-scale inhomogeneities in density.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M. P. & Tildesley, D. J. 1987 Computer Simulation of Liquids. Clarendon Press.Google Scholar
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52, 245268.CrossRefGoogle Scholar
Baxter, R. J. 1968 Percus–Yevick equation for hard spheres with surface adhesion. J. Chem. Phys. 49, 27702774.CrossRefGoogle Scholar
Baxter, R. J. 1970 Orstein–Zernicke relation and Percus–Yevick approximation for fluid mixtures. J. Chem. Phys. 52, 45594562.CrossRefGoogle Scholar
Beasley, J. D. & Torquato, S. 1989 New bounds on the permeability of a random array of spheres. Phys. Fluids A 1, 199207.CrossRefGoogle Scholar
Bickert, G. & Stahl, W. 1996 Sedimentation behavior of mono- and polydisperse submicron particles in dilute and in concentrated suspensions. In 7th World Filtration Conference, Budapest, Hungary.Google Scholar
Brady, J. F. & Durlofsky, L. J. 1988 The sedimentation rate of disordered suspensions. Phys. Fluids 31, 717727.CrossRefGoogle Scholar
Buscall, R., Goodwin, J. W., Ottewill, R. H. & Tadros, T. F. 1982 The settling of particles through Newtonian and non-Newtonian media. J. Colloid Interface Sci. 85, 7886.CrossRefGoogle Scholar
Buscall, R. & White, L. R. 1987 The consolidation of concentrated suspensions. J. Chem. Soc. Faraday Trans. I 83, 873891.CrossRefGoogle Scholar
Chiew, Y. C. & Glandt, E. D. 1983 Percolation behavior of permeable and adhesive spheres. J. Phys. A: Math. Gen. 16, 25992608.CrossRefGoogle Scholar
Clarke, A. S. & Wiley, J. D. 1987 Numerical simulation of the dense random packing of a binary mixture of hard spheres: amorphous metals. Phys. Rev. B 35, 73507356.CrossRefGoogle ScholarPubMed
Fleer, G. J., Cohen Stuart, M. A., Scheutjens, M. H. M., Cosgrove, T. & Vincent, B. 1993 Polymers at Interfaces. Chapman and Hall.Google Scholar
Gilleland, W. T. 2004 New bounds to estimate the sedimentation velocities or monodispers and binary colloidal suspensions. PhD thesis, Princeton University, Princeton, NJ.Google Scholar
Grant, M. C. & Russel, W. B. 1993 Volume-fraction dependence of elastic moduli and transition temperatures for colloidal silica gels. Phys. Rev. E 47, 26062614.CrossRefGoogle ScholarPubMed
Hansen, J.-P. & McDonald, I. R. 1986 Theory of Simple Liquids. Academic Press.Google Scholar
Hunter, R. J. 1987 Foundations of Colloid Science. Oxford University Press.Google Scholar
Jansen, J. W., de Kruif, C. G. & Vrij, A. 1986 Attractions in sterically stabilized silica dispersions. Part IV. Sedimentation. J. Colloid Interface Sci. 114, 501504.CrossRefGoogle Scholar
de Kruif, C. G., Jansen, J. W. & Vrij, A. 1987 A sterically stabilized silica colloid as a model supramolecular fluid. In Physics of Complex and Supramolecular Fluids. Wiley Interscience.Google Scholar
Lionberger, R. A. 1996 Rheology, structure and diffusion in concentrated colloidal dispersions. PhD thesis, Princeton University, Princeton, NJ.Google Scholar
Luke, J. H. C. 1992 A minimum principle for Stokes flows containing rigid particles and an upper bound on the sedimentation speed. Phys. Fluids A 4, 212219.CrossRefGoogle Scholar
Luke, J. H. C. 1993 A variational upper bound on the renormalized mean sedimentation speed in concentrated suspensions of identical randomly arranged spheres. SIAM J. Appl. Math. 53, 16131635.CrossRefGoogle Scholar
Moncha-Jorda, A., Louis, A. A. & Padding, J. T. 2010 Effects of interparticle attractions on colloidal sedimentation. Phys. Rev. Lett. 104, 068301 (1–4).CrossRefGoogle Scholar
Napper, D. H. 1983 Polymeric Stabilization of Colloidal Dispersions. Academic Press.Google Scholar
Nguyen, N. Q. & Ladd, A. J. C. 2005 Sedimentation of hard-sphere suspensions at low Reynolds number. J. Fluid Mech. 525, 73104.CrossRefGoogle Scholar
O'Brien, R. W. 1979 A method for the calculation of the effective transport properties of suspensions of interacting particles. J. Fluid Mech. 91, 1739.CrossRefGoogle Scholar
Paulin, S. E. & Ackerson, B. J. 1990 Observation of a phase transition in the sedimentation velocity of hard spheres. Phys. Rev. Lett. 64, 26632666.CrossRefGoogle ScholarPubMed
Pusey, P. N. 1991 Liquides, Cristallisation et Transition Vitreuse. Elsevier Science.Google Scholar
Regnaut, C. & Ravey, J. C. 1989 Application of the adhesive sphere model to the structure of colloidal suspensions. J. Chem. Phys. 91, 12111221.CrossRefGoogle Scholar
Rintoul, M. D. & Torquato, S. 1996 Computer simulations of dense hard-sphere systems. J. Chem. Phys. 105, 92589265.CrossRefGoogle Scholar
Rintoul, M. D. & Torquato, S. 1998 Hard-sphere statistics along the metastable amorphous branch. Phys. Rev. E 58, 532537.CrossRefGoogle Scholar
Rosenbaum, D., Zamora, P. C. & Zukoski, C. F. 1996 Phase behavior of small attractive colloidal particles. Phys. Rev. Lett. 76, 150153.CrossRefGoogle ScholarPubMed
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1991 Colloidal Dispersions. Cambridge University Press.Google Scholar
Seaton, N. A. & Glandt, E. D. 1987 Aggregation and percolation in a system of adhesive spheres. J. Chem. Phys. 86, 46684677.CrossRefGoogle Scholar
Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. 1983 Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784805.CrossRefGoogle Scholar
Thies-Weesie, D. M. E., Philipse, A. P., Nagele, G., Mandl, B. & Klein, R. 1995 Nonanalytic concentration dependence of sedimentation of charged spheres in an organic solvent: experiments and calculations. J. Colloid Interface Sci. 176, 4354.CrossRefGoogle Scholar
Torquato, S. 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer.CrossRefGoogle Scholar
Torquato, S. & Beasley, J. D. 1987 Bounds on the permeabiity of a random array of partially penetrable spheres. Phys. Fluids 30, 633641.CrossRefGoogle Scholar
van de Ven, T. G. M. 1989 Colloidal Hydrodynamics. Academic Press.Google Scholar
Verlet, L. & Weis, J.-J. 1972 Equilibrium theory of simple liquids. Phys. Rev. A 5, 939952.CrossRefGoogle Scholar
Xue, J. Z., Herbolzheimer, E., Rutgers, M. A., Russel, W. B. & Chaikin, P. M. 1992 Diffusion, dispersion, and settling of hard spheres. Phys. Rev. Lett. 69, 17151718.CrossRefGoogle ScholarPubMed
Zick, A. A. & Homsy, G. M. 1982 Stokes flows through periodic arrays of spheres. J. Fluid Mech. 115, 1326.CrossRefGoogle Scholar