Hostname: page-component-f554764f5-rvxtl Total loading time: 0 Render date: 2025-04-16T23:12:14.477Z Has data issue: false hasContentIssue false

Natural oscillations of sessile drops with a central bubble on a solid wall

Published online by Cambridge University Press:  14 March 2025

Fei Zhang
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
Chunyu Zhang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Shuguang Zhao
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
Yingjie Yu
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
Jingwei Chen
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Hang Ding
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Xinping Zhou*
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
*
Corresponding author: Xinping Zhou, [email protected]

Abstract

We investigate the natural oscillations of sessile drops with a central trapped bubble on a plane using linear potential flow theory, considering both free and pinned contact lines. The system is governed by the contact angle $\alpha$ and the ratio $\tau$ of inner to outer contact line radii. For bubble-containing (BC) hemispherical drops with free contact lines (referred to as free BC semi-drops), the modes mirror half of those in concentric spherical BC drops due to plane symmetry. These modes are labelled ‘plus’ (with greater inner surface deformation) and ‘minus’ (with greater outer surface deformation). As $\tau \to 0$, minus modes converge to those of bubble-free drops. Results show that varying $\alpha$ from $90^\circ$ or pinning the contact line in free BC semi-drops alters the topology of spectral lines, turning original crossings of spectral lines between minus and plus modes into avoided crossings. This shift causes minus and plus modes to form spectral trends with avoided crossings, maintaining their original spectral shapes. In an avoided crossing, two coupled modes cannot be classified as plus or minus due to their comparable inner and outer surface deformations, resulting in mode beating when both are excited, as confirmed by our direct numerical simulations. This study on the impact of inner bubbles on the spectrum may help in predicting bubble size in opaque sessile drops.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Basaran, O.A. & DePaoli, D.W. 1994 Nonlinear oscillations of pendant drops. Phys. Fluids 6 (9), 29232943.CrossRefGoogle Scholar
Bhattacharya, S. 2016 Interfacial wave dynamics of a drop with an embedded bubble. Phys. Rev. E 93 (2), 023119.CrossRefGoogle ScholarPubMed
Bostwick, J.B. & Steen, P.H. 2009 Capillary oscillations of a constrained liquid drop. Phys. Fluids 21 (3), 032108.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2013 Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions. J. Fluid Mech. 714, 312335.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2014 Dynamics of sessile drops. Part 1. Inviscid theory. J. Fluid Mech. 760, 538.CrossRefGoogle Scholar
Bouwhuis, W., van der Veen, R.C.A., Tran, T., Keij, D.L., Winkels, K.G., Peters, I.R., van der Meer, D., Sun, C., Snoeijer, J.H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109 (26), 264501.CrossRefGoogle ScholarPubMed
Chang, C.-T., Bostwick, J.B., Daniel, S. & Steen, P.H. 2015 Dynamics of sessile drops. Part 2. Experiment. J. Fluid Mech. 768, 442467.CrossRefGoogle Scholar
Chang, C.-T., Bostwick, J.B., Steen, P.H. & Daniel, S. 2013 Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops. Phys. Rev. E 88 (2), 023015.CrossRefGoogle ScholarPubMed
Chiu, P.H. & Lin, Y.T. 2011 A conservative phase field method for solving incompressible two-phase flows. J. Comput. Phys. 230 (1), 185204.CrossRefGoogle Scholar
Cliffe, K.A. & Winters, K.H. 1986 The use of symmetry in bifurcation calculations and its application to the Bénard problem. J. Comput. Phys. 67 (2), 310326.CrossRefGoogle Scholar
Ding, D. & Bostwick, J.B. 2022 a Oscillations of a partially wetting bubble. J. Fluid Mech. 945, A24.CrossRefGoogle Scholar
Ding, D. & Bostwick, J.B. 2022 b Pressure modes of the oscillating sessile drop. J. Fluid Mech. 944, R1.CrossRefGoogle Scholar
Ding, H., Spelt, P.D.M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226 (2), 20782095.CrossRefGoogle Scholar
Ding, H., Zhu, X., Gao, P. & Lu, X.-Y. 2018 Ratchet mechanism of drops climbing a vibrated oblique plate. J. Fluid Mech. 835, R1.CrossRefGoogle Scholar
Ebrahimian, M., Noorian, M.A. & Haddadpour, H. 2013 A successive boundary element model for investigation of sloshing frequencies in axisymmetric multi baffled containers. Engng Anal. Bound. Elem. 37 (2), 383392.CrossRefGoogle Scholar
Ebrahimian, M., Noorian, M.A. & Haddadpour, H. 2015 Free vibration sloshing analysis in axisymmetric baffled containers under low-gravity condition. Microgravity Sci. Technol. 27 (2), 97106.CrossRefGoogle Scholar
Faust, T., Rieger, J., Seitner, M.J., Krenn, P., Kotthaus, J.P. & Weig, E.M. 2012 Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes. Phys. Rev. Lett. 109 (3), 037205.CrossRefGoogle ScholarPubMed
Feng, Z.C. & Leal, L.G. 1997 Nonlinear bubble dynamics. Annu. Rev. Fluid Mech. 29 (1), 201243.CrossRefGoogle Scholar
Ida, M. 2005 Avoided crossings in three coupled oscillators as a model system of acoustic bubbles. Phys. Rev. E 72 (3), 036306.CrossRefGoogle Scholar
James, A., Vukasinovic, B., Smith, M.K. & Glezer, A. 2003 Vibration-induced drop atomization and bursting. J. Fluid Mech. 476, 128.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S.T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48 (1), 365391.CrossRefGoogle Scholar
Kern, V.R., Bostwick, J.B. & Steen, P.H. 2021 Drop impact on solids: contact-angle hysteresis filters impact energy into modal vibrations. J. Fluid Mech. 923, A5.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Lane, C.E. 1925 Binaural beats. Phys. Rev. 26 (3), 401412.CrossRefGoogle Scholar
Lohse, D. 2022 Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 54 (1), 349382.CrossRefGoogle Scholar
Lyubimov, D.V., Konovalov, V.V., Lyubimova, T.P. & Egry, I. 2012 Oscillations of a liquid spherical drop encapsulated by a non-concentric spherical layer of dissimilar liquid. Eur. J. Mech. B/Fluids 32, 8087.CrossRefGoogle Scholar
Lyubimov, D.V., Lyubimova, T.P. & Shklyaev, S.V. 2004 Non-axisymmetric oscillations of a hemispherical drop. Fluid Dyn. 39 (6), 851862.CrossRefGoogle Scholar
Lyubimov, D.V., Lyubimova, T.P. & Shklyaev, S.V. 2006 Behavior of a drop on an oscillating solid plate. Phys. Fluids 18 (1), 012101.CrossRefGoogle Scholar
McCraney, J., Kern, V., Bostwick, J.B., Daniel, S. & Steen, P.H. 2022 Oscillations of drops with mobile contact lines on the international space station: elucidation of terrestrial inertial droplet spreading. Phys. Rev. Lett. 129 (8), 084501.CrossRefGoogle ScholarPubMed
Mehdi-Nejad, V., Mostaghimi, J. & Chandra, S. 2003 Air bubble entrapment under an impacting droplet. Phys. Fluids 15 (1), 173183.CrossRefGoogle Scholar
Myshkis, A.D., Babskii, V.G., Kopachevskii, N.D., Slobozhanin, L.A. & Tyuptsov, A.D. 1987 Low-Gravity Fluid Mechanics. Springer.CrossRefGoogle Scholar
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2004 Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur. Phys. J. E 14 (4), 395404.CrossRefGoogle ScholarPubMed
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2005 Triplon modes of puddles. Phys. Rev. Lett. 94 (16), 166102.CrossRefGoogle ScholarPubMed
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2009 Vibrations of sessile drops. Eur. Phys. J. Spec. Top. 166 (1), 710.CrossRefGoogle Scholar
Novotny, L. 2010 Strong coupling, energy splitting, and level crossings: a classical perspective. Am. J. Phys. 78 (11), 11991202.CrossRefGoogle Scholar
Plesset, M.S. 1949 The dynamics of cavitation bubbles. Trans. ASME J. Appl. Mech. 16 (3), 277282.CrossRefGoogle Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC Press.CrossRefGoogle Scholar
Pumphrey, H.C. & Elmore, P.A. 1990 The entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539567.CrossRefGoogle Scholar
Rayleigh, J.W.S. 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34 (200), 9498.CrossRefGoogle Scholar
Rayleigh, L. 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. A 29 (196-199), 7197.Google Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 6193.CrossRefGoogle Scholar
Roberts, G.E. 2016 From Music to Mathematics: Exploring the Connections. JHU Press.CrossRefGoogle Scholar
Saffren, M., Elleman, D.D. & Rhim, W.K. 1981 Normal modes of a compound drop. In Proceedings of the 2nd International Colloquium on Drops and Bubbles, pp. 714. Jet Propulsion Laboratory Publication.Google Scholar
Sakakeeny, J. & Ling, Y. 2020 Natural oscillations of a sessile drop on flat surfaces with mobile contact lines. Phys. Rev. Fluids 5 (12), 123604.CrossRefGoogle Scholar
Sakakeeny, J. & Ling, Y. 2021 Numerical study of natural oscillations of supported drops with free and pinned contact lines. Phys. Fluids 33 (6), 062109.CrossRefGoogle Scholar
Sharma, S. & Wilson, D.I. 2021 On a toroidal method to solve the sessile-drop oscillation problem. J. Fluid Mech. 919, A39.CrossRefGoogle Scholar
Shiryaev, A. 2020 Oscillations of an inviscid encapsulated drop. Fluid Dyn. Mater. Process. 16 (4), 761771.CrossRefGoogle Scholar
Singh, M., Haverinen, H.M., Dhagat, P. & Jabbour, G.E. 2010 Inkjet printing–process and its applications. Adv. Mater. 22 (6), 673685.CrossRefGoogle ScholarPubMed
Strani, M. & Sabetta, F. 1984 Free vibrations of a drop in partial contact with a solid support. J. Fluid Mech. 141, 233247.CrossRefGoogle Scholar
Sumanasekara, U.R. & Bhattacharya, S. 2017 Detailed finer features in spectra of interfacial waves for characterization of a bubble-laden drop. J. Fluid Mech. 831, 698718.CrossRefGoogle Scholar
Thomson, W.T. & Dahleh, M.D. 1997 Theory of Vibration with Applications. 5th edn. Prentice Hall.Google Scholar
Thoroddsen, S.T., Etoh, T.G., Takehara, K., Ootsuka, N. & Hatsuki, Y. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.CrossRefGoogle Scholar
Viola, F. & Verzicco, R. 2023 Walking droplets have been halted. J. Fluid Mech. 966, F1.CrossRefGoogle Scholar
Vukasinovic, B., Smith, M.K. & Glezer, A. 2007 Dynamics of a sessile drop in forced vibration. J. Fluid Mech. 587, 395423.CrossRefGoogle Scholar
Wagoner, B.W., Garg, V., Harris, M.T., Ramkrishna, D. & Basaran, O.A. 2021 Oscillations of a ring-constrained charged drop. J. Fluid Mech. 921, A19.CrossRefGoogle Scholar
Zhang, C.Y., Gao, P., Li, E.Q. & Ding, H. 2021 On the compound sessile drops: configuration boundaries and transitions. J. Fluid Mech. 917, A37.CrossRefGoogle Scholar
Zhang, F. & Zhou, X. 2023 Static and dynamic stability of pendant drops. J. Fluid Mech. 968, A30.CrossRefGoogle Scholar
Zhang, F., Zhou, X. & Ding, H. 2023 Effects of gravity on natural oscillations of sessile drops. J. Fluid Mech. 962, A10.CrossRefGoogle Scholar
Supplementary material: File

Zhang et al. supplementary material movie 1

Mode beating of two coupled modes with equal outer amplitudes of 0.05.
Download Zhang et al. supplementary material movie 1(File)
File 2.3 MB
Supplementary material: File

Zhang et al. supplementary material movie 2

Mode beating of two coupled modes with unequal outer amplitudes of 0.05 and $0.05/3$.
Download Zhang et al. supplementary material movie 2(File)
File 2.2 MB