Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T04:41:57.789Z Has data issue: false hasContentIssue false

A multiscale model for the rupture of linear polymers in strong flows

Published online by Cambridge University Press:  11 June 2018

E. Rognin*
Affiliation:
Institute for Manufacturing, Department of Engineering, University of Cambridge, 17 Charles Babbage Road, Cambridge CB3 0FS, UK
N. Willis-Fox
Affiliation:
Institute for Manufacturing, Department of Engineering, University of Cambridge, 17 Charles Babbage Road, Cambridge CB3 0FS, UK
T. A. Aljohani
Affiliation:
National Centre for Corrosion Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia
R. Daly
Affiliation:
Institute for Manufacturing, Department of Engineering, University of Cambridge, 17 Charles Babbage Road, Cambridge CB3 0FS, UK
*
Email address for correspondence: [email protected]

Abstract

Polymer-containing solutions used across research and industry are commonly exposed to mechanically harsh fluid processes, for example shear and extensional forces during flow through porous media or rapid microdispensing of biopharmaceutical molecules. These forces are strong enough to break the covalent bonds in the polymer backbone. As this scission phenomenon can change the functional and fluid-flow properties as well as introduce reactive radicals into the solution, it must be understood and controlled. Experiments and models to date have only provided partial or qualitative insights into this behaviour. Here we build a link between the molecular-scale degradation models and the macroscale laminar flow of dilute solutions in any given geometry. A free-draining bead–rod model is used to investigate rupture events at the molecular scale. It is shown by uniaxial extension simulations of an ensemble of chains that scission can be conveniently described at the macroscopic scale as a first-order reaction whose rate is a function of the conformation tensor of the macromolecules and the velocity gradient of the flow. This approach is implemented in the finite volume code OpenFOAM by elaborating an appropriate constitutive equation for the conformation tensor. The macroscopic model is run and analysed for ultra-dilute solutions of poly(methyl methacrylate) in ethyl acetate and polyethylene oxide in water, using the geometry of an abrupt contraction flow and neglecting any viscoelastic effect. This multiscale approach bridges the gap between phenomenological observations of mechanically induced chemical degradation in large-scale applications and the rich field of molecular-scale models of macromolecules under flow.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A-Alamry, K., Nixon, K., Hindley, R., Odel, J. A. & Yeates, S. G. 2011 Flow-induced polymer degradation during ink-jet printing. Macromol. Rapid Commun. 32 (3), 316320.Google Scholar
Banchio, A. J. & Brady, J. F. 2003 Accelerated Stokesian dynamics: Brownian motion. J. Chem. Phys. 118 (22), 1032310332.Google Scholar
Barnard, B. J. S. & Sellin, R. H. J. 1972 Degradation of dilute solutions of drag-reducing polymer. Nature 236 (62), 1214.Google Scholar
Bestul, A. B. 1956 Kinetics of capillary shear degradation in concentrated polymer solutions. J. Chem. Phys. 24 (6), 11961201.Google Scholar
Beyer, M. K. 2000 The mechanical strength of a covalent bond calculated by density functional theory. J. Chem. Phys. 112 (17), 73077312.Google Scholar
Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory, 2nd edn. Wiley-Interscience.Google Scholar
Bird, R. B. & Wiest, J. M. 1995 Constitutive equations for polymeric liquids. Annu. Rev. Fluid Mech. 27 (1), 169193.Google Scholar
Brandrup, J., Immergut, E. H. & Grulke, E. A. 1999 Polymer Handbook, 4th edn. Wiley.Google Scholar
Buchholz, B. A., Zahn, J. M., Kenward, M., Slater, G. W. & Barron, A. E. 2004 Flow-induced chain scission as a physical route to narrowly distributed, high molar mass polymers. Polymer 45 (4), 12231234.Google Scholar
Caruso, M. M., Davis, D. A., Shen, Q., Odom, S. A., Sottos, N. R., White, S. R. & Moore, J. S. 2009 Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 109 (11), 57555798.CrossRefGoogle ScholarPubMed
Choi, H. J., Kim, C. A., Sohn, J. & Jhon, M. S. 2000 An exponential decay function for polymer degradation in turbulent drag reduction. Polym. Degrad. Stab. 69 (3), 341346.CrossRefGoogle Scholar
Clay, J. D. & Koelling, K. W. 1997 Molecular degradation of concentrated polystyrene solutions in a fast transient extensional flow. Polym. Engng Sci. 37 (5), 789800.Google Scholar
Dean, W. R. & Montagnon, P. E. 1949 On the steady motion of viscous liquid in a corner. Math. Proc. Cambridge Phil. Soc. 45 (3), 389394.CrossRefGoogle Scholar
Doyle, P. S., Shaqfeh, E. S. G. & Gast, A. P. 1997 Dynamic simulation of freely draining flexible polymers in steady linear flows. J. Fluid Mech. 334, 251291.Google Scholar
Elbing, B. R., Solomon, M. J., Perlin, M., Dowling, D. R. & Ceccio, S. L. 2011 Flow-induced degradation of drag-reducing polymer solutions within a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 670, 337364.Google Scholar
Favero, J. L., Secchi, A. R., Cardozo, N. S. M. & Jasak, H. 2010 Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. J. Non-Newtonian Fluid 165 (23–24), 16251636.CrossRefGoogle Scholar
Geyer, T. & Winter, U. 2009 An 𝓞(N 2) approximation for hydrodynamic interactions in Brownian dynamics simulations. J. Chem. Phys. 130 (11), 114905.Google Scholar
Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H. E. 1999 How strong is a covalent bond? Science 283 (5408), 17271730.Google Scholar
Grokhovsky, S. L., Il’icheva, I. A., Nechipurenko, D. Y., Golovkin, M. V., Panchenko, L. A., Polozov, R. V. & Nechipurenko, Y. D. 2011 Sequence-specific ultrasonic cleavage of DNA. Biophys. J. 100 (1), 117125.CrossRefGoogle ScholarPubMed
Harrington, R. E. & Zimm, B. H. 1965 Degradation of polymers by controlled hydrodynamic shear1. J. Phys. Chem. 69 (1), 161175.CrossRefGoogle Scholar
Hawe, A., Wiggenhorn, M., van de Weert, M., Garbe, J. H. O., Mahler, H.-C. & Jiskoot, W. 2012 Forced degradation of therapeutic proteins. J. Pharm. Sci. 101 (3), 895913.Google Scholar
Hinch, E. J. 1994 Uncoiling a polymer molecule in a strong extensional flow. J. Non-Newtonian Fluid 54, 209230.CrossRefGoogle Scholar
Hsieh, C.-C., Park, S. J. & Larson, R. G. 2005 Brownian dynamics modeling of flow-induced birefringence and chain scission in dilute polymer solutions in a planar cross-slot flow. Macromolecules 38 (4), 14561468.Google Scholar
Ilg, P., Mavrantzas, V. & Öttinger, H. C. 2010 Multiscale modeling and coarse graining of polymer dynamics: simulations guided by statistical beyond-equilibrium thermodynamics. In Modeling and Simulation in Polymers (ed. Gujrati, P. D. & Leonov, A. I.), pp. 343383. Wiley-VCH.Google Scholar
James, D. F. & Mclaren, D. R. 1975 The laminar flow of dilute polymer solutions through porous media. J. Fluid Mech. 70 (4), 733752.Google Scholar
Kang, K., Lee, L. J. & Koelling, K. W. 2005 High shear microfluidics and its application in rheological measurement. Exp. Fluids 38 (2), 222232.Google Scholar
Knudsen, K. D., Hernández Cifre, J. G. & García de la Torre, J. 1996a Conformation and fracture of polystyrene chains in extensional flow studied by numerical simulation. Macromolecules 29 (10), 36033610.Google Scholar
Knudsen, K. D., López Martinez, M. C. & García de la Torre, J. 1996b Fracture of DNA in transient extensional flow. A numerical simulation study. Biopolymers 39 (3), 435444.3.0.CO;2-A>CrossRefGoogle Scholar
Larson, R. G. & Desai, P. S. 2015 Modeling the rheology of polymer melts and solutions. Annu. Rev. Fluid Mech. 47 (1), 4765.Google Scholar
Li, J., Nagamani, C. & Moore, J. S. 2015 Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 48 (8), 21812190.Google Scholar
Lielens, G., Keunings, R. & Legat, V. 1999 The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells. J. Non-Newtonian Fluid 87 (2–3), 179196.Google Scholar
Liu, T. W. 1989 Flexible polymer chain dynamics and rheological properties in steady flows. J. Chem. Phys. 90 (10), 58265842.Google Scholar
Lumley, J. L. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 1 (1), 367384.CrossRefGoogle Scholar
López Cascales, J. J. & García de la Torre, J. 1991 Simulation of polymer chains in elongational flow. Steady-state properties and chain fracture. J. Chem. Phys. 95 (12), 93849392.Google Scholar
López Cascales, J. J. & García de la Torre, J. 1992 Simulation of polymer chains in elongational flow. Kinetics of chain fracture and fragment distribution. J. Chem. Phys. 97 (6), 45494554.Google Scholar
Maroja, A. M., Oliveira, F. A., Ciesla, M. & Longa, L. 2001 Polymer fragmentation in extensional flow. Phys. Rev. E 63 (6), 061801.Google ScholarPubMed
May, P. A. & Moore, J. S. 2013 Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem. Soc. Rev. 42 (18), 74977506.Google Scholar
Moghani, M. M. & Khomami, B. 2017 Computationally efficient algorithms for Brownian dynamics simulation of long flexible macromolecules modeled as bead-rod chains. Phys. Rev. Fluids 2 (2), 023303.CrossRefGoogle Scholar
Nghe, P., Tabeling, P. & Ajdari, A. 2010 Flow-induced polymer degradation probed by a high throughput microfluidic set-up. J. Non-Newtonian Fluid 165 (7‐8), 313322.Google Scholar
Odell, J. A. & Keller, A. 1986 Flow-induced chain fracture of isolated linear macromolecules in solution. J. Polym. Sci. Pol. Phys. 24 (9), 18891916.Google Scholar
Paterson, R. W. & Abernathy, F. H. 1970 Turbulent flow drag reduction and degradation with dilute polymer solutions. J. Fluid Mech. 43 (4), 689710.Google Scholar
Pereira, A. S. & Soares, E. J. 2012 Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device. J. Non-Newtonian Fluid 179–180, 922.Google Scholar
Prather, K. J., Sagar, S., Murphy, J. & Chartrain, M. 2003 Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme Microb. Technol. 33 (7), 865883.Google Scholar
Rallison, J. M. & Hinch, E. J. 1988 Do we understand the physics in the constitutive equation? J. Non-Newtonian Fluid 29, 3755.Google Scholar
Rathore, N. & Rajan, R. S. 2008 Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol. Progr. 24 (3), 504514.Google Scholar
Reese, H. R. & Zimm, B. H. 1990 Fracture of polymer chains in extensional flow: experiments with DNA, and a molecular-dynamics simulation. J. Chem. Phys. 92 (4), 26502662.Google Scholar
Ribas-Arino, J. & Marx, D. 2012 Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem. Rev. 112 (10), 54125487.Google Scholar
Saadat, A. & Khomami, B. 2015 Matrix-free Brownian dynamics simulation technique for semidilute polymeric solutions. Phys. Rev. E 92 (3), 033307.Google Scholar
Schieber, J. D. & Obasanjo, O. 2005 On estimating stress in free-draining Kramers chain simulations using stochastic filtering. J. Non-Newtonian Fluid 127 (2–3), 8993.Google Scholar
Schmidt, R. R., Cifre, J. G. H. & García de la Torre, J. 2011 Comparison of Brownian dynamics algorithms with hydrodynamic interaction. J. Chem. Phys. 135 (8), 084116.CrossRefGoogle ScholarPubMed
Shendure, J. & Ji, H. 2008 Next-generation DNA sequencing. Nat. Biotechnol. 26 (10), 11351145.Google Scholar
Sim, H. G., Khomami, B. & Sureshkumar, R. 2007 Flow-induced chain scission in dilute polymer solutions: algorithm development and results for scission dynamics in elongational flow. J. Rheol. 51 (6), 12231251.Google Scholar
Stacklies, W., Vega, M. C., Wilmanns, M. & Gräter, F. 2009 Mechanical network in titin immunoglobulin from force distribution analysis. PLOS Comput. Biol. 5 (3), e1000306.Google Scholar
Stauch, T. & Dreuw, A. 2016 Advances in quantum mechanochemistry: electronic structure methods and force analysis. Chem. Rev. 116 (22), 1413714180.Google Scholar
Teraoka, I. 2002 Polymer Solutions: An Introduction to Physical Properties, 1st edn. John Wiley.CrossRefGoogle Scholar
Thorstenson, Y. R., Hunicke-Smith, S. P., Oefner, P. J. & Davis, R. W. 1998 An automated hydrodynamic process for controlled, unbiased DNA shearing. Genome Res. 8 (8), 848855.Google Scholar
Van Den Brule, B., van Heel, T. & Hulsen, M. 2011 Brownian configuration fields: a new method for simulating viscoelastic fluid flow. Macromol. Symp. 121 (1), 205217.Google Scholar
Vanapalli, S. A., Ceccio, S. L. & Solomon, M. J. 2006 Universal scaling for polymer chain scission in turbulence. Proc. Natl Acad. Sci. USA 103 (45), 1666016665.CrossRefGoogle ScholarPubMed
Vasquez, P. A., McKinley, G. H. & Cook, P. L. 2007 A network scission model for wormlike micellar solutions: I. Model formulation and viscometric flow predictions. J. Non-Newtonian Fluid 144 (2), 122139.Google Scholar
Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21 (4), 625656.Google Scholar
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.Google Scholar
Wu, M. L., Freitas, S. S., Monteiro, G. A., Prazeres, D. M. F. & Santos, J. A. L. 2009 Stabilization of naked and condensed plasmid DNA against degradation induced by ultrasounds and high-shear vortices. Biotechnol. Appl. Biochem. 53, 237246.Google Scholar
Supplementary material: File

Rognin et al. supplementary material

Rognin et al. supplementary material 1

Download Rognin et al. supplementary material(File)
File 5.8 MB