Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T16:36:11.288Z Has data issue: false hasContentIssue false

Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence

Published online by Cambridge University Press:  17 May 2010

YUE YANG*
Affiliation:
Graduate Aerospace Laboratories, 205-45, California Institute of Technology, Pasadena, CA 91125, USA
D. I. PULLIN
Affiliation:
Graduate Aerospace Laboratories, 205-45, California Institute of Technology, Pasadena, CA 91125, USA
IVÁN BERMEJO-MORENO
Affiliation:
Graduate Aerospace Laboratories, 205-45, California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: [email protected]

Abstract

We report the multi-scale geometric analysis of Lagrangian structures in forced isotropic turbulence and also with a frozen turbulent field. A particle backward-tracking method, which is stable and topology preserving, was applied to obtain the Lagrangian scalar field φ governed by the pure advection equation in the Eulerian form ∂tφ + u · ∇φ = 0. The temporal evolution of Lagrangian structures was first obtained by extracting iso-surfaces of φ with resolution 10243 at different times, from t = 0 to t = Te, where Te is the eddy turnover time. The surface area growth rate of the Lagrangian structure was quantified and the formation of stretched and rolled-up structures was observed in straining regions and stretched vortex tubes, respectively. The multi-scale geometric analysis of Bermejo-Moreno & Pullin (J. Fluid Mech., vol. 603, 2008, p. 101) has been applied to the evolution of φ to extract structures at different length scales and to characterize their non-local geometry in a space of reduced geometrical parameters. In this multi-scale sense, we observe, for the evolving turbulent velocity field, an evolutionary breakdown of initially large-scale Lagrangian structures that first distort and then either themselves are broken down or stretched laterally into sheets. Moreover, after a finite time, this progression appears to be insensible to the form of the initially smooth Lagrangian field. In comparison with the statistical geometry of instantaneous passive scalar and enstrophy fields in turbulence obtained by Bermejo-Moreno & Pullin (2008) and Bermejo-Moreno et al. (J. Fluid Mech., vol. 620, 2009, p. 121), Lagrangian structures tend to exhibit more prevalent sheet-like shapes at intermediate and small scales. For the frozen flow, the Lagrangian field appears to be attracted onto a stream-surface field and it develops less complex multi-scale geometry than found for the turbulent velocity field. In the latter case, there appears to be a tendency for the Lagrangian field to move towards a vortex-surface field of the evolving turbulent flow but this is mitigated by cumulative viscous effects.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 121.CrossRefGoogle Scholar
Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 23432353.CrossRefGoogle Scholar
Batchelor, G. K. 1952 a Diffusion in a field of homogeneous turbulence. Part II. The relative motion of particles. Proc. Cambridge Phil. Soc. 48, 345362.CrossRefGoogle Scholar
Batchelor, G. K. 1952 b The effect of homogeneous turbulence on material lines and surfaces. Proc. R. Soc. Lond. A 213, 349366.Google Scholar
Bermejo-Moreno, I. & Pullin, D. I. 2008 On the non-local geometry of turbulence. J. Fluid Mech. 603, 101135.CrossRefGoogle Scholar
Bermejo-Moreno, I., Pullin, D. I. & Horiuti, K. 2009 Geometry of enstrophy and dissipation, grid resolution effects and proximity issues in turbulence. J. Fluid Mech. 620, 121166.CrossRefGoogle Scholar
Boratav, O. N. & Pelz, R. B. 1994 Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids 6, 27572784.CrossRefGoogle Scholar
Bourgoin, M., Ouellette, N. T., Xu, H. T., Berg, J. & Bodenschatz, E. 2006 The role of pair dispersion in turbulent flow. Science 311, 835838.CrossRefGoogle ScholarPubMed
Brachet, M. E., Meiron, D. I., Orszag, S. A., Nickel, B. G., Morf, R. H. & Frisch, U. 1983 Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 130, 411452.CrossRefGoogle Scholar
Brethouwer, G., Hunt, J. C. R. & Nieuwstadt, F. T. M. 2003 Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech. 474, 193225.CrossRefGoogle Scholar
Candès, E., Demanet, L., Donoho, D. & Ying, L. 2005 Fast discrete curvelet transforms. Multiscale Model Simul. 5, 861899.CrossRefGoogle Scholar
Chertkov, M., Pumir, A. & Shraiman, B. I. 1999 Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11, 23942410.CrossRefGoogle Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.CrossRefGoogle Scholar
Chung, D. & Pullin, D. I. 2009 Large-eddy simulation and wall modelling of turbulent channel flow. J. Fluid Mech. 631, 281309.CrossRefGoogle Scholar
Demanet, L. & Ying, L. 2007 Curvelets and wave atoms for mirror-extended images. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6701, p. 67010J. SPIE.Google Scholar
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395457.CrossRefGoogle Scholar
Girimaji, S. S. & Pope, S. B. 1990 Material-element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.CrossRefGoogle Scholar
Goto, S. & Kida, S. 2007 Reynolds-number dependence of line and surface stretching in turbulence: folding effects. J. Fluid Mech. 586, 5981.CrossRefGoogle Scholar
Haller, G. 2001 Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248277.CrossRefGoogle Scholar
Hou, T. Y. & Li, R. 2006 Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226, 379397.CrossRefGoogle Scholar
Kraichnan, R. H. 1965 Lagrangian-history closure approximation for turbulence. Phys. Fluids 8, 575598.CrossRefGoogle Scholar
Leonard, A. 2009 The universal structure of high-curvature regions of material lines in chaotic flows. J. Fluid Mech. 622, 167175.CrossRefGoogle Scholar
LeVeque, R. J. 1992 Numerical Methods for Conservation Laws, 2nd edn. Birkhäuser.CrossRefGoogle Scholar
Li, Y. & Meneveau, C. 2007 Material deformation in a restricted Euler model for turbulent flows: analytic solution and numerical tests. Phys. Fluids 19, 015104.CrossRefGoogle Scholar
Lundgren, T. S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 21932203.CrossRefGoogle Scholar
Ma, J., Hussaini, M. Y., Vasilyev, O. V. & Le Dimet, F.-X. 2009 Multiscale geometric analysis of turbulence by curvelets. Phys. Fluids 21, 075104.CrossRefGoogle Scholar
Marsden, J. E. & Hughes, T. J. R. 1994 Mathematical Foundations of Elasticity. Dover.Google Scholar
Meneveau, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, 469520.CrossRefGoogle Scholar
Misra, A. & Pullin, D. I. 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9, 24432454.CrossRefGoogle Scholar
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics of Turbulence. MIT.Google Scholar
Nahum, A. & Seifert, A. 2006 Technique for backward particle tracking in a flow field. Phys. Rev. E 74, 016701.CrossRefGoogle Scholar
Peng, J. & Dabiri, J. O. 2008 An overview of a Lagrangian method for analysis of animal wake dynamics. J. Exp. Biol. 211, 280287.CrossRefGoogle ScholarPubMed
Pope, S. B. 1987 Turbulent premixed flames. Annu. Rev. Fluid Mech. 19, 237270.CrossRefGoogle Scholar
Pope, S. B., Yueng, P. K. & Girimaji, S. S. 1989 The curvature of material surfaces in isotropic turbulence. Phys. Fluids A 1, 20102018.CrossRefGoogle Scholar
Pullin, D. I. & Saffman, P. G. 1993 On the Lundgren–Townsend model of turbulent fine scales. Phys. Fluid A 5, 126145.CrossRefGoogle Scholar
Pumir, A., Shraiman, B. I. & Chertkov, M. 2000 Geometry of Lagrangian dispersion in turbulence. Phys. Rev. Lett. 85, 53245327.CrossRefGoogle ScholarPubMed
Rhines, P. B. & Young, W. R. 1983 How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133145.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Ruetsch, G. R. & Maxey, M. R. 1992 The evolution of small-scale structures in homogeneous isotropic turbulence. Phys. Fluid A 4, 27472760.CrossRefGoogle Scholar
Salazar, J. P. L. C. & Collins, L. R. 2009 Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405432.CrossRefGoogle Scholar
Sawford, B. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289317.CrossRefGoogle Scholar
Schumacher, J., Sreenivasan, K. R. & Yeung, P. K. 2005 Very fine structures in scalar mixing. J. Fluid Mech. 531, 113122.CrossRefGoogle Scholar
Stam, J. 1999 Stable fluids. In SIGGRAPH'99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121128. ACM.CrossRefGoogle Scholar
Taylor, G. I. 1922 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196212.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Wang, L. P. & Peters, N. 2006 The length-scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457475.CrossRefGoogle Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.CrossRefGoogle Scholar
Xu, H., Ouellette, N. T. & Bodenschatz, E. 2008 Evolution of geometric structures in intense turbulence. New J. Phys. 10, 013012.CrossRefGoogle Scholar
Yang, Y., He, G.-W. & Wang, L.-P. 2008 Effects of subgrid-scale modelling on Lagrangian statistics in large-eddy simulation. J. Turbul. 9 (8), 124.CrossRefGoogle Scholar
Yeung, P. K. 2002 Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115142.CrossRefGoogle Scholar
Yeung, P. K. & Pope, S. B. 1988 An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79, 373416.CrossRefGoogle Scholar