Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T21:48:23.288Z Has data issue: false hasContentIssue false

Multiple helical modes of vortex breakdown

Published online by Cambridge University Press:  19 August 2011

J. N. Sørensen*
Affiliation:
Department of Mechanical Engineering and Center for Fluid Dynamics, Technical University of Denmark, Nils Koppels Allé, 403, DK-2800 Lyngby, Denmark
I. V. Naumov
Affiliation:
Institute of Thermophysics, SB RAS and Novosibirsk State University, 630090, Novosibirsk, Russia
V. L. Okulov
Affiliation:
Department of Mechanical Engineering and Center for Fluid Dynamics, Technical University of Denmark, Nils Koppels Allé, 403, DK-2800 Lyngby, Denmark
*
Email address for correspondence: [email protected]

Abstract

Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvin’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alekseenko, S. V., Kuibin, P. A., Okulov, V. L. & Shtork, S. I. 1999 Helical vortices in swirl flow. J. Fluid Mech. 382, 195243.CrossRefGoogle Scholar
2. Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.CrossRefGoogle Scholar
3. Billant, P., Chomaz, J. M. & Huerre, P. 1998 Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183219.CrossRefGoogle Scholar
4. Escudier, M. P. 1984 Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids 2, 189196.CrossRefGoogle Scholar
5. Escudier, M. P. 1988 Vortex breakdown: observations and explanations. Prog. Aerosp. Sci. 25, 189229.CrossRefGoogle Scholar
6. Faler, J. H. & Leibovich, S. 1978 An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech. 86 (2), 313335.CrossRefGoogle Scholar
7. Gelfgat, A. Y., Bar-Yoseph, P. Z. & Solan, A. 2001 Three-dimensional instability of axisymmetric flow in a rotating lid–cylinder enclosure. J. Fluid Mech. 438, 363377.CrossRefGoogle Scholar
8. Havelock, T. H. 1931 The stability of motion of rectilinear vortices in ring formation. Phil. Mag. 11, 617633.CrossRefGoogle Scholar
9. Heaton, C. J. & Peake, N. 2007 Transient growth in vortices with axial flow. J. Fluid Mech. 587, 271301.CrossRefGoogle Scholar
10. Khoo, B. C., Yeo, K. S., Lim, D. F. & He, X. 1997 Vortex breakdown in an unconfined vortical flow. Exp. Therm. Fluid Sci. 14, 131148.CrossRefGoogle Scholar
11. Kuibin, P. A. & Okulov, V. L. 1996 One-dimensional solutions for a flow with a helical symmetry. Thermophys. Aeromech. 3, 297301.Google Scholar
12. Lambourne, N. C. & Bryer, D. W. 1961 The bursting of leading-edge vortices. Aero. Res. Counc. R&M 3282, 136.Google Scholar
13. Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 1. Confined swirling flow. J. Fluid Mech. 221, 533552.CrossRefGoogle Scholar
14. Lopez, J. M. 2006 Rotating and modulated rotating waves in transitions of an enclosed swirling flow. J. Fluid Mech. 553, 323346.CrossRefGoogle Scholar
15. Naumov, I. V., Okulov, V. L., Mayer, K. E., Sørensen, J. N. & Shen, W. Z. 2003 LDA–PIV diagnostics and 3D simulation of oscillating swirl flow in a closed cylindrical container. Thermophys. Aeromech. 10 (2), 143148.Google Scholar
16. Okulov, V. L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.CrossRefGoogle Scholar
17. Okulov, V. L. & Sørensen, J. N. 2007 Stability of helical tip vortices in a rotor far wake. J. Fluid Mech. 576, 125.CrossRefGoogle Scholar
18. Okulov, V. L., Sørensen, J. N. & Varlamova, E. A. 2004 Emergence of asymmetry and unsteadiness in laboratory simulation of the hydrodynamic structure of a tornado. Izv. Acad. Nauk SSSR Atmos. Ocean. Phys. 40 (2), 169182.Google Scholar
19. Sarpkaya, T. 1971 On stationary and travelling vortex breakdowns. J. Fluid Mech. 45 (3), 545559.CrossRefGoogle Scholar
20. Sarpkaya, T. 1995 Turbulent vortex breakdown. Phys. Fluids 7, 23012303.CrossRefGoogle Scholar
21. Sørensen, J. N., Gelfgat, A. Y., Naumov, I. V. & Mikkelsen, R. 2009 Experimental and numerical results on three-dimensional instabilities in a rotating disk-tall cylinder flow. Phys. Fluids 21 (5), 054102.CrossRefGoogle Scholar
22. Sørensen, J. N., Naumov, I. V. & Mikkelsen, R. 2006 Experimental investigation in three-dimensional flow instabilities in a rotating lid-driven cavity. Exp. Fluids 41, 425440.CrossRefGoogle Scholar
23. Thomson, J. J. 1883 A Treatise on the Motion of Vortex Rings. Macmillan.Google Scholar
24. Thomson, W. (Lord Kelvin) 1878 Floating magnets (illustrating vortex-systems). Nature 18, 1314.CrossRefGoogle Scholar