Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T14:45:15.707Z Has data issue: false hasContentIssue false

Multilayer shallow water equations with complete Coriolis force. Part 2. Linear plane waves

Published online by Cambridge University Press:  25 November 2011

Andrew L. Stewart
Affiliation:
OCIAM, Mathematical Institute, 24–29 St Giles’, Oxford OX1 3LB, UK
Paul J. Dellar*
Affiliation:
OCIAM, Mathematical Institute, 24–29 St Giles’, Oxford OX1 3LB, UK
*
Email address for correspondence: [email protected]

Abstract

We investigate the behaviour of linear plane waves in multilayer shallow water equations that include a complete treatment of the Coriolis force. These equations improve upon the conventional shallow water equations, based on the traditional approximation, that include only the part of the Coriolis force due to the locally vertical component of the rotation vector. Including the complete Coriolis force leads to dramatic changes in the structure of long linear plane waves. It allows subinertial waves to exist with frequencies below the inertial frequency, the minimum frequency for which waves exist under the traditional approximation. These subinertial waves are characterized by a distinguished limit in which the horizontal pressure gradient becomes comparable to the upwellings and downwellings driven by the non-traditional Coriolis term in the vertical momentum equation. The subinertial waves connect wave modes that remain separate in the conventional multilayer shallow water equations, such as the surface and internal waves in a two-layer system. Eastward-propagating surface waves in a two-layer system connect with westward-propagating internal waves, and vice versa, via the long subinertial waves. The long subinertial waves cannot be classified as either surface or internal waves, due to the phase difference between the disturbances to the interfaces in these waves.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
2. Bleck, R. & Chassignet, E. 1994 Simulating the oceanic circulation with isopycnic-coordinate models. In The Oceans: Physical–Chemical Dynamics and Human Impact (ed. Majumdar, S., Miller, E., Forbe, G., Schmalz, R. & Panah, A. ), pp. 1739. Pennsylvania Acad. Sci.Google Scholar
3. Bleck, R., Rooth, C., Hu, D. & Smith, L. T. 1992 Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr. 22, 14861505.2.0.CO;2>CrossRefGoogle Scholar
4. Boss, E., Paldor, N. & Thompson, L. 1996 Stability of a potential vorticity front: from quasi-geostrophy to shallow water. J. Fluid Mech. 315, 6584.CrossRefGoogle Scholar
5. Botte, V. & Kay, A. 2002 A model of the wind-driven circulation in Lake Baikal. Dyn. Atmos. Oceans 35, 131152.CrossRefGoogle Scholar
6. Craik, A. D. D. 1985 Wave Interactions and Fluid Flows. Cambridge University Press.Google Scholar
7. Cullen, M. J. P. 1993 The unified forecast/climate model. Meteorol. Mag. 122, 8194.Google Scholar
8. Dellar, P. J. 2011 Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 674, 174195.CrossRefGoogle Scholar
9. Dellar, P. J. & Salmon, R. 2005 Shallow water equations with a complete Coriolis force and topography. Phys. Fluids 17, 106601–19.CrossRefGoogle Scholar
10. Dowling, T. E. & Ingersoll, A. P. 1989 Jupiter’s Great Red Spot as a shallow water system. J. Atmos. Sci. 46, 32563278.2.0.CO;2>CrossRefGoogle Scholar
11. Eckart, C. 1960 Hydrodynamics of Oceans and Atmospheres. Pergamon.Google Scholar
12. Flynn, W. G. & Littlejohn, R. G. 1994 Normal forms for linear mode conversion and Landau–Zener transitions in one dimension. Ann. Phys. 234, 334403.CrossRefGoogle Scholar
13. Fu, L. -L. 1981 Observations and models of inertial waves in the deep ocean. Rev. Geophys. 19, 141170.CrossRefGoogle Scholar
14. Gerkema, T. & Exarchou, E. 2008 Internal-wave properties in weakly stratified layers. J. Mar. Res. 66, 617644.CrossRefGoogle Scholar
15. Gerkema, T. & Shrira, V. I. 2005a Near-inertial waves in the ocean: beyond the ‘traditional approximation’. J. Fluid Mech. 529, 195219.CrossRefGoogle Scholar
16. Gerkema, T. & Shrira, V. I. 2005b Near-inertial waves on the non-traditional -plane. J. Geophys. Res. 110, C10003.CrossRefGoogle Scholar
17. Gerkema, T., Zimmerman, J. T. F., Maas, L. R. M. & van Haren, H. 2008 Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46, RG2004.CrossRefGoogle Scholar
18. Gill, A. E. 1982 Atmosphere Ocean Dynamics. Academic Press.Google Scholar
19. van Haren, H. & Millot, C. 2004 Rectilinear and circular inertial motions in the Western Mediterranean Sea. Deep-Sea Res. 51, 14411455.CrossRefGoogle Scholar
20. van Haren, H. & Millot, C. 2005 Gyroscopic waves in the Mediterranean Sea. Geophys. Res. Lett. 32, L24614.CrossRefGoogle Scholar
21. Hendershott, M. C. 1981 Long waves and ocean tides. In Evolution of Physical Oceanography (ed. Warren, B. A. & Wunsch, C. ), pp. 292341. Massachusetts Institute of Technology Press.Google Scholar
22. Hughes, B. 1964 Effect of rotation on internal gravity waves. Nature 201, 798801.CrossRefGoogle Scholar
23. Kasahara, A. 2003 The roles of the horizontal component of the Earth’s angular velocity in nonhydrostatic linear models. J. Atmos. Sci. 60, 10851095.2.0.CO;2>CrossRefGoogle Scholar
24. Kasahara, A. 2007 Initial-value approach to study the inertio-gravity waves without the ‘traditional approximation’. J. Comput. Phys. 225, 21752197.CrossRefGoogle Scholar
25. Kasahara, A. & Gary, J. M. 2010 Studies of inertio-gravity waves on midlatitude beta-plane without the traditional approximation. Q. J. R. Meteorol. Soc. 136, 517536.CrossRefGoogle Scholar
26. Landau, L. D. & Lifshitz, E. 1977 Quantum Mechanics: Non-Relativistic Theory, 3rd edn. Butterworth–Heinemann.Google Scholar
27. LeBlond, P. H. & Mysak, L. A. 1978 Waves in the Ocean. Elsevier.Google Scholar
28. Leibovich, S. & Lele, S. K. 1985 The influence of the horizontal component of Earth’s angular velocity on the instability of the Ekman layer. J. Fluid Mech. 150, 4187.CrossRefGoogle Scholar
29. Long, R. R. 1956 Long waves in a two-fluid system. J. Met. 13, 7074.2.0.CO;2>CrossRefGoogle Scholar
30. Marshall, J., Hill, C., Perelman, L. & Adcroft, A. 1997 Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modelling. J. Geophys. Res. 102, 57335752.CrossRefGoogle Scholar
31. Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 164.CrossRefGoogle Scholar
32. Munk, W. 1981 Internal waves and small-scale processes. In Evolution of Physical Oceanography (ed. Warren, B. A. & Wunsch, C. ), pp. 264291. Massachusetts Institute of Technology Press.Google Scholar
33. Munk, W. & Phillips, N. 1968 Coherence and band structure of inertial motion in the sea. Rev. Geophys. 6, 447472.CrossRefGoogle Scholar
34. Nof, D. & Olson, D. B. 1993 How do western abyssal currents cross the equator? Deep-Sea Res. 40, 235255.CrossRefGoogle Scholar
35. Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
36. Phillips, N. A. 1954 Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6, 273286.CrossRefGoogle Scholar
37. Phillips, N. A. 1968 Reply to Comment by Veronis. J. Atmos. Sci. 25, 11551157.2.0.CO;2>CrossRefGoogle Scholar
38. Phillips, N. A. 1973 Principles of large scale numerical weather prediction. In Dynamic Meteorology: Lectures Delivered at the Summer School of Space Physics of the Centre National d’Études Spatiales (ed. Morel, P. ), pp. 396. D. Reidel Pub. Co.Google Scholar
39. Saint-Guily, B. 1970 On internal waves. Effects of the horizontal component of the Earth’s rotation and of a uniform current. Dtsch. Hydrogr. Z. 23, 1623.CrossRefGoogle Scholar
40. Salmon, R. 1982 The shape of the main thermocline. J. Phys. Oceanogr. 12, 14581479.2.0.CO;2>CrossRefGoogle Scholar
41. Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.CrossRefGoogle Scholar
42. Stewart, A. L. & Dellar, P. J. 2010 Multilayer shallow water equations with complete Coriolis force. Part I. Derivation on a non-traditional beta-plane. J. Fluid Mech. 651, 387413.CrossRefGoogle Scholar
43. Stewart, A. L. & Dellar, P. J. 2011a The rôle of the complete Coriolis force in cross-equatorial flow of abyssal ocean currents. Ocean Model. 38, 187202.CrossRefGoogle Scholar
44. Stewart, A. L. & Dellar, P. J. 2011b Cross-equatorial flow through an abyssal channel under the complete Coriolis force: two-dimensional solutions. Ocean Model. 40, 87104.CrossRefGoogle Scholar
45. Tailleux, R. & McWilliams, J. C. 2002 Energy propagation of long extratropical Rossby waves over slowly varying zonal topography. J. Fluid Mech. 473, 295319.CrossRefGoogle Scholar
46. Thuburn, J., Wood, N. & Staniforth, A. 2002a Normal modes of deep atmospheres. I: spherical geometry. Q. J. R. Meteorol. Soc. 128, 17711792.CrossRefGoogle Scholar
47. Thuburn, J., Wood, N. & Staniforth, A. 2002b Normal modes of deep atmospheres. II: f-F-plane geometry. Q. J. R. Meteorol. Soc. 128, 17931806.CrossRefGoogle Scholar
48. Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
49. Vanneste, J. 2001 Mode conversion for Rossby waves over topography: comments on ‘Localized coupling between surface- and bottom-intensified flow over topography’. J. Phys. Oceanogr. 31, 19221925.2.0.CO;2>CrossRefGoogle Scholar
50. Voronovich, V. V., Shrira, V. I. & Stepanyants, Y. A. 1998 Two-dimensional models for nonlinear vorticity waves in shear flows. Stud. Appl. Maths 100, 132.CrossRefGoogle Scholar
51. White, A. A. 2002 A view of the equations of meteorological dynamics and various approximations. In Large-scale Atmosphere–Ocean Dynamics 1: Analytical Methods and Numerical Models (ed. Norbury, J. & Roulstone, I. ), pp. 1100. Cambridge University Press.Google Scholar
52. White, A. A. & Bromley, R. A. 1995 Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Q. J. R. Meteorol. Soc. 121, 399418.Google Scholar
53. White, A. A., Hoskins, B. J., Roulstone, I. & Staniforth, A. 2005 Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Q. J. R. Meteorol. Soc. 131, 20812107.CrossRefGoogle Scholar
54. Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley Interscience.Google Scholar
55. Wu, T. Y. 1981 Long waves in ocean and coastal waters. J. Engng Mech. ASCE 107, 501522.Google Scholar
56. Zeitlin, V. 2007 Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances. Elsevier.Google Scholar