Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:15:04.000Z Has data issue: false hasContentIssue false

Multilayer network analysis to study complex inter-subsystem interactions in a turbulent thermoacoustic system

Published online by Cambridge University Press:  27 June 2023

Shruti Tandon
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
R.I. Sujith*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
*
Email address for correspondence: [email protected]

Abstract

Thermoacoustic systems are complex systems where the interactions between the hydrodynamic, acoustic and heat release rate fluctuations lead to diverse dynamics such as chaos, intermittency and ordered dynamics. Such complex interactions cause catastrophically high-amplitude acoustic pressure oscillations and the emergence of order in the spatiotemporal dynamics, referred to as thermoacoustic instability. In this work, we use multilayer networks to study the spatial pattern of inter-subsystem interactions between the vorticity dynamics and thermoacoustic power generated due to acoustically coupled combustion in a bluff-body-stabilised turbulent dump combustor. We construct a two-layered network where the layers represent the thermoacoustic power and vorticity fields. The inter-layer links are determined using cross-variable short-window correlations between vorticity and thermoacoustic power fluctuations at any two locations in the flow field. Analysing the topology of inter-layer networks, using network properties such as degree correlations and link-rank distributions, helps us infer the spatial inhomogeneities in inter-subsystem interactions and unravel the fluid mechanical processes involved during different dynamical states. We show that, during chaotic dynamics, interactions between subsystems are non-localised and spread throughout the flow field of the combustor. During the state of thermoacoustic instability (order), we find that intense interactions occur in between regions of coherent vortex shedding and thermoacoustic power generation and we understand that these processes are strongly and locally coupled. Moreover, we discover that such dense inter-layer connections emerge in spatial pockets in the dump plane of the combustor during the state of intermittency much prior to the onset of order.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleta, A. & Moreno, Y. 2019 Multilayer networks in a nutshell. Annu. Rev. Condens. Matter Phys. 10, 4562.CrossRefGoogle Scholar
Ananthkrishnan, N., Sudhakar, K., Sudershan, S. & Agarwal, A. 1998 Application of secondary bifurcations to large-amplitude limit cycles in mechanical systems. J. Sound Vib. 215 (1), 183188.CrossRefGoogle Scholar
Aoki, C., Gotoda, H., Yoshida, S. & Tachibana, S. 2020 Dynamic behavior of intermittent combustion oscillations in a model rocket engine combustor. J. Appl. Phys. 127 (22), 224903.CrossRefGoogle Scholar
de Arruda, G.F., Cozzo, E., Moreno, Y. & Rodrigues, F.A. 2016 On degree–degree correlations in multilayer networks. Physica D 323, 511.CrossRefGoogle Scholar
Arshinov, V. & Fuchs, C. 2003 Causality, Emergence, Self-Organisation. NIA-Priroda Moscow.Google Scholar
Barabási, A.-L. 2013 Network science. Philos. Trans., Math. phys. eng. sci. 371 (1987), 20120375.Google ScholarPubMed
Barrett, L., Henzi, S.P. & Lusseau, D. 2012 Taking sociality seriously: the structure of multi-dimensional social networks as a source of information for individuals. Philos. Trans. R. Soc. B: Biol. Sci. 367 (1599), 21082118.CrossRefGoogle ScholarPubMed
Bertalanffy, L. v. 1968 General System Theory: Foundations, Development, Applications. G. Braziller.Google Scholar
Bianconi, G. 2018 Multilayer Networks: Structure and Function. Oxford University Press.CrossRefGoogle Scholar
Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z. & Zanin, M. 2014 The structure and dynamics of multilayer networks. Phys. Rep. 544 (1), 1122.CrossRefGoogle ScholarPubMed
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29 (1), 128.CrossRefGoogle Scholar
Chu, B.-T. & Kovásznay, L.S. 1958 Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3 (5), 494514.CrossRefGoogle Scholar
De Domenico, M. 2017 Multilayer modeling and analysis of human brain networks. Gigascience 6 (5), gix004.CrossRefGoogle ScholarPubMed
De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S. & Arenas, A. 2013 Mathematical formulation of multilayer networks. Phys. Rev. X 3 (4), 041022.Google Scholar
Donges, J.F., Schultz, H.C.H., Marwan, N., Zou, Y. & Kurths, J. 2011 Investigating the topology of interacting networks. Eur. Phys. J. B 84 (4), 635651.CrossRefGoogle Scholar
Dowling, A.P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271290.CrossRefGoogle Scholar
Ebi, D., Denisov, A., Bonciolini, G., Boujo, E. & Noiray, N. 2018 Flame dynamics intermittency in the bistable region near a subcritical Hopf bifurcation. J. Eng. Gas Turbine Power 140 (6), 061504.CrossRefGoogle Scholar
Finn, K.R., Silk, M.J., Porter, M.A. & Pinter-Wollman, N. 2019 The use of multilayer network analysis in animal behaviour. Anim. Behav. 149, 722.CrossRefGoogle ScholarPubMed
Fuchs, C. 2003 Structuration theory and self-organization. Systemic practice and action research 16, 133167.CrossRefGoogle Scholar
Gao, Z.-K., Small, M. & Kurths, J. 2017 Complex network analysis of time series. Europhys. Lett. 116 (5), 50001.CrossRefGoogle Scholar
George, N.B., Unni, V.R., Raghunathan, M. & Sujith, R.I. 2018 Pattern formation during transition from combustion noise to thermoacoustic instability via intermittency. J. Fluid Mech. 849, 615644.CrossRefGoogle Scholar
Gershenson, C. & Heylighen, F. 2003 When can we call a system self-organizing? In Advances in Artificial Life: 7th European Conference, ECAL 2003, pp. 606–614. Springer.CrossRefGoogle Scholar
Godavarthi, V., Pawar, S.A., Unni, V.R., Sujith, R.I., Marwan, N. & Kurths, J. 2018 Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor. Chaos 28 (11), 113111.CrossRefGoogle Scholar
Godavarthi, V., Unni, V.R., Gopalakrishnan, E.A. & Sujith, R.I. 2017 Recurrence networks to study dynamical transitions in a turbulent combustor. Chaos 27 (6), 063113.CrossRefGoogle Scholar
Gotoda, H., Kinugawa, H., Tsujimoto, R., Domen, S. & Okuno, Y. 2017 Characterization of combustion dynamics, detection, and prevention of an unstable combustion state based on a complex-network theory. Phys. Rev. Appl. 7 (4), 044027.CrossRefGoogle Scholar
Gotoda, H., Nikimoto, H., Miyano, T. & Tachibana, S. 2011 Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21 (1), 013124.CrossRefGoogle Scholar
Gotoda, H., Shinoda, Y., Kobayashi, M., Okuno, Y. & Tachibana, S. 2014 Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 89 (2), 022910.CrossRefGoogle ScholarPubMed
Hardy, C. 2001 Self-organization, self-reference and inter-influences in multilevel webs: beyond causality and determinism. Cybernetics and Human Knowing 8 (3), 3559.Google Scholar
Hashimoto, T., Shibuya, H., Gotoda, H., Ohmichi, Y. & Matsuyama, S. 2019 Spatiotemporal dynamics and early detection of thermoacoustic combustion instability in a model rocket combustor. Phys. Rev. E 99 (3), 032208.CrossRefGoogle Scholar
Hemchandra, S., Peters, N. & Lieuwen, T. 2011 Heat release response of acoustically forced turbulent premixed flames–role of kinematic restoration. Proc. Combust. Inst. 33 (1), 16091617.CrossRefGoogle Scholar
Heylighen, F., Cilliers, P. & Gershenson, C. 2007 Complexity and philosophy. In Complexity, Science and Society, (ed. J. Bogg & R. Geyer). Radcliffe.Google Scholar
Holovatch, Y., Kenna, R. & Thurner, S. 2017 Complex systems: physics beyond physics. Eur. J. Phys. 38 (2), 023002.CrossRefGoogle Scholar
Iacobello, G., Ridolfi, L. & Scarsoglio, S. 2021 A review on turbulent and vortical flow analyses via complex networks. Physica A 563, 125476.CrossRefGoogle Scholar
Iacobello, G., Scarsoglio, S., Kuerten, J. & Ridolfi, L. 2018 Spatial characterization of turbulent channel flow via complex networks. Phys. Rev. E 98 (1), 013107.CrossRefGoogle ScholarPubMed
Kang, C., Jiang, Z. & Liu, Y. 2022 Measuring hub locations in time-evolving spatial interaction networks based on explicit spatiotemporal coupling and group centrality. Intl J. Geogr. Inf. Syst. 36 (2), 360381.CrossRefGoogle Scholar
Kauffman, S.A. 1995 At Home in the Universe: The Search for Laws of Self-Organization and Complexity. Oxford University Press.Google Scholar
Kheirkhah, S., Cirtwill, J.M., Saini, P., Venkatesan, K. & Steinberg, A.M. 2017 Dynamics and mechanisms of pressure, heat release rate, and fuel spray coupling during intermittent thermoacoustic oscillations in a model aeronautical combustor at elevated pressure. Combust. Flame 185, 319334.CrossRefGoogle Scholar
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y. & Porter, M.A. 2014 Multilayer networks. J. Complex Netw. 2 (3), 203271.CrossRefGoogle Scholar
Kobayashi, T., Murayama, S., Hachijo, T. & Gotoda, H. 2019 Early detection of thermoacoustic combustion instability using a methodology combining complex networks and machine learning. Phys. Rev. Appl. 11 (6), 064034.CrossRefGoogle Scholar
Krishnan, A., Manikandan, R., Midhun, P.R., Reeja, K.V., Unni, V.R., Sujith, R.I., Marwan, N. & Kurths, J. 2019 a Mitigation of oscillatory instability in turbulent reactive flows: a novel approach using complex networks. Europhys. Lett. 128 (1), 14003.CrossRefGoogle Scholar
Krishnan, A., Sujith, R.I., Marwan, N. & Kurths, J. 2019 b On the emergence of large clusters of acoustic power sources at the onset of thermoacoustic instability in a turbulent combustor. J. Fluid Mech. 874, 455482.CrossRefGoogle Scholar
Krishnan, A., Sujith, R.I., Marwan, N. & Kurths, J. 2021 Suppression of thermoacoustic instability by targeting the hubs of the turbulent networks in a bluff body stabilized combustor. J. Fluid Mech. 916, A20.CrossRefGoogle Scholar
Kurosaka, T., Masuda, S. & Gotoda, H. 2021 Attenuation of thermoacoustic combustion oscillations in a swirl-stabilized turbulent combustor. Chaos 31 (7), 073121.CrossRefGoogle Scholar
Lacarelle, A., Luchtenburg, D.M., Bothien, M.R., Noack, B.R. & Paschereit, C.O. 2010 Combination of image postprocessing tools to identify coherent structures of premixed flames. AIAA J. 48 (8), 17081720.CrossRefGoogle Scholar
Laera, D., Schuller, T., Prieur, K., Durox, D., Camporeale, S.M. & Candel, S. 2017 Flame describing function analysis of spinning and standing modes in an annular combustor and comparison with experiments. Combust. Flame 184, 136152.CrossRefGoogle Scholar
Lieuwen, T.C. 2002 Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor. J. Propuls. Power 18 (1), 6167.CrossRefGoogle Scholar
Lieuwen, T.C. 2021 Unsteady Combustor Physics. Cambridge University Press.CrossRefGoogle Scholar
Lieuwen, T.C. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. American Institute of Aeronautics and Astronautics.Google Scholar
Litvak, N. & Van Der Hofstad, R. 2013 Uncovering disassortativity in large scale-free networks. Phys. Rev. E 87 (2), 022801.CrossRefGoogle ScholarPubMed
Matveev, K.I. & Culick, F. 2003 A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 175 (6), 10591083.CrossRefGoogle Scholar
McManus, K.R., Poinsot, T. & Candel, S.M. 1993 A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 19 (1), 129.CrossRefGoogle Scholar
Mondal, S., Unni, V.R. & Sujith, R. 2017 Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states. J. Fluid Mech. 811, 659681.CrossRefGoogle Scholar
Murase, Y., Török, J., Jo, H.-H., Kaski, K. & Kertész, J. 2014 Multilayer weighted social network model. Phys. Rev. E 90 (5), 052810.CrossRefGoogle ScholarPubMed
Murugesan, M. & Sujith, R.I. 2015 Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability. J. Fluid Mech. 772, 225245.CrossRefGoogle Scholar
Nair, V., Thampi, G. & Sujith, R.I. 2014 Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470487.CrossRefGoogle Scholar
Newman, M.E.J. 2002 Assortative mixing in networks. Phys. Rev. Lett. 89 (20), 208701.CrossRefGoogle ScholarPubMed
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.CrossRefGoogle Scholar
Noldus, R. & Van Mieghem, P. 2015 Assortativity in complex networks. J. Complex Netw. 3 (4), 507542.CrossRefGoogle Scholar
Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.C., Noack, B.R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.CrossRefGoogle Scholar
Okuno, Y., Small, M. & Gotoda, H. 2015 Dynamics of self-excited thermoacoustic instability in a combustion system: pseudo-periodic and high-dimensional nature. Chaos 25 (4), 043107.CrossRefGoogle Scholar
Ottino, J.M. 2003 Complex systems. Am. Inst. Chem. Engrs J. 49 (2), 292.CrossRefGoogle Scholar
Paschereit, C.O., Gutmark, E. & Weisenstein, W. 1999 Coherent structures in swirling flows and their role in acoustic combustion control. Phys. Fluids 11 (9), 26672678.CrossRefGoogle Scholar
Pastor-Satorras, R., Vázquez, A. & Vespignani, A. 2001 Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87 (25), 258701.CrossRefGoogle ScholarPubMed
Pawar, S.A. 2018 Studying thermoacoustic systems in the framework of synchronization theory. PhD thesis, Indian Institute of Technology, Madras.Google Scholar
Pawar, S.A., Seshadri, A., Unni, V.R. & Sujith, R.I. 2017 Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow. J. Fluid Mech. 827, 664693.CrossRefGoogle Scholar
Poinsot, T.J., Trouve, A.C., Veynante, D.P., Candel, S.M. & Esposito, E.J. 1987 Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265292.CrossRefGoogle Scholar
Polifke, W. 2020 Modeling and analysis of premixed flame dynamics by means of distributed time delays. Prog. Energy Combust. Sci. 79, 100845.CrossRefGoogle Scholar
Premchand, C.P., George, N.B., Raghunathan, M., Unni, V.R., Sujith, R.I. & Nair, V. 2019 Lagrangian analysis of intermittent sound sources in the flow-field of a bluff-body stabilized combustor. Phys. Fluids 31 (2), 025115.CrossRefGoogle Scholar
Raghunathan, M., George, N.B., Unni, V.R., Midhun, P.R., Reeja, K.V. & Sujith, R.I. 2020 Multifractal analysis of flame dynamics during transition to thermoacoustic instability in a turbulent combustor. J. Fluid Mech. 888, A14.CrossRefGoogle Scholar
Ratner, B. 2009 The correlation coefficient: its values range between $+$1/$-$1, or do they? J. Target. Meas. Anal. Mark. 17 (2), 139142.CrossRefGoogle Scholar
Rayleigh, Lord 1878 The explanation of certain acoustical phenomena. Roy. Inst. Proc. 8, 536542.Google Scholar
Reis, S.D.S., Hu, Y., Babino, A., Andrade, J.S. Jr, Canals, S., Sigman, M. & Makse, H.A. 2014 Avoiding catastrophic failure in correlated networks of networks. Nat. Phys. 10 (10), 762767.CrossRefGoogle Scholar
Rind, D. 1999 Complexity and climate. Science 284 (5411), 105107.CrossRefGoogle ScholarPubMed
Roy, A., Premchand, C.P., Raghunathan, M., Krishnan, A., Nair, V. & Sujith, R.I. 2021 Critical region in the spatiotemporal dynamics of a turbulent thermoacoustic system and smart passive control. Combust. Flame 226, 274284.CrossRefGoogle Scholar
Schadow, K.C. & Gutmark, E. 1992 Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 18 (2), 117132.CrossRefGoogle Scholar
Schmid, P.J., Li, L., Juniper, M.P. & Pust, O. 2011 Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25 (1), 249259.CrossRefGoogle Scholar
Schuller, T., Poinsot, T. & Candel, S. 2020 Dynamics and control of premixed combustion systems based on flame transfer and describing functions. J. Fluid Mech. 894, P1.CrossRefGoogle Scholar
Shima, S., Nakamura, K., Gotoda, H., Ohmichi, Y. & Matsuyama, S. 2021 Formation mechanism of high-frequency combustion oscillations in a model rocket engine combustor. Phys. Fluids 33 (6), 064108.CrossRefGoogle Scholar
Sterling, J.D. & Zukoski, E.E. 1987 Longitudinal mode combustion instabilities in a dump combustor. In 25th Aerospace Sciences Meeting, Reno, NV, USA, AIAA paper 87-0220. American Institute of Aeronautics and Astronautics.Google Scholar
Sujith, R.I. & Pawar, S.A. 2021 Thermoacoustic Instability: A Complex Systems Perspective. Springer.CrossRefGoogle Scholar
Sujith, R.I. & Unni, V.R. 2020 Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors. Phys. Fluids 32 (6), 061401.CrossRefGoogle Scholar
Taira, K., Nair, A.G. & Brunton, S.L. 2016 Network structure of two-dimensional decaying isotropic turbulence. J. Fluid Mech. 795, R2.CrossRefGoogle Scholar
Tammisola, O. & Juniper, M.P. 2016 Coherent structures in a swirl injector at $Re= 4800$ by nonlinear simulations and linear global modes. J. Fluid Mech. 792, 620657.CrossRefGoogle Scholar
Tandon, S. & Sujith, R.I. 2021 Condensation in the phase space and network topology during transition from chaos to order in turbulent thermoacoustic systems. Chaos 31 (4), 043126.CrossRefGoogle ScholarPubMed
Tony, J., Gopalakrishnan, E.A., Sreelekha, E. & Sujith, R.I. 2015 Detecting deterministic nature of pressure measurements from a turbulent combustor. Phys. Rev. E 92 (6), 062902.CrossRefGoogle ScholarPubMed
Tsonis, A.A., Swanson, K.L. & Roebber, P.J. 2006 What do networks have to do with climate? Bull. Am. Meteorol. Soc. 87 (5), 585596.CrossRefGoogle Scholar
Unni, V.R., Krishnan, A., Manikandan, R., George, N.B., Sujith, R.I., Marwan, N. & Kurths, J. 2018 On the emergence of critical regions at the onset of thermoacoustic instability in a turbulent combustor. Chaos 28 (6), 063125.CrossRefGoogle Scholar
Unni, V.R. & Sujith, R.I. 2017 Flame dynamics during intermittency in a turbulent combustor. Proc. Combust. Inst. 36 (3), 37913798.CrossRefGoogle Scholar
Vázquez, A., Pastor-Satorras, R. & Vespignani, A. 2002 Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65 (6), 066130.CrossRefGoogle ScholarPubMed
Wilke, C.R. 1950 A viscosity equation for gas mixtures. J. Chem. Phys. 18 (4), 517519.CrossRefGoogle Scholar
Witherington, D.C. 2011 Taking emergence seriously: the centrality of circular causality for dynamic systems approaches to development. Hum. Dev. 54 (2), 6692.CrossRefGoogle Scholar
Xu, X.-K., Zhang, J., Sun, J. & Small, M. 2009 Revising the simple measures of assortativity in complex networks. Phys. Rev. E 80 (5), 056106.CrossRefGoogle ScholarPubMed
Ying, N., Zhou, D., Han, Z.G., Chen, Q.H., Ye, Q. & Xue, Z.G. 2020 Rossby waves detection in the CO$_2$ and temperature multilayer climate network. Geophys. Res. Lett. 47 (2), e2019GL086507.CrossRefGoogle Scholar
Zhang, Y., Zhao, D., Zhang, J., Xiong, R. & Gao, W. 2011 Interpolation-dependent image downsampling. IEEE Trans. Image Process. 20 (11), 32913296.CrossRefGoogle ScholarPubMed
Zhou, S. & Mondragón, R.J. 2004 The rich-club phenomenon in the Internet topology. IEEE Commun. Lett. 8 (3), 180182.CrossRefGoogle Scholar