Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T18:57:05.313Z Has data issue: false hasContentIssue false

Motion of slender bodies in unsteady Stokes flow

Published online by Cambridge University Press:  13 October 2011

Efrath Barta*
Affiliation:
Bar-Code Computers Ltd, Tirat-HaCarmel, 39120, Israel
*
Email address for correspondence: [email protected]

Abstract

The flow regime in the vicinity of oscillatory slender bodies, either an isolated one or a row of many bodies, immersed in viscous fluid (i.e. under creeping flow conditions) is studied. Applying the slender-body theory by distributing proper singularities on the bodies’ major axes yields reasonably accurate and easily computed solutions. The effect of the oscillations is revealed by comparisons with known Stokes flow solutions and is found to be most significant for motion along the normal direction. Streamline patterns associated with motion of a single body are characterized by formation and evolution of eddies. The motion of adjacent bodies results, with a reduction or an increase of the drag force exerted by each body depending on the direction of motion and the specific geometrical set-up. This dependence is demonstrated by parametric results for frequency of oscillations, number of bodies, their slenderness ratio and the spacing between them. Our method, being valid for a wide range of parameter values and for densely packed arrays of rods, enables simulation of realistic flapping of bristled wings of some tiny insects and of locomotion of flagella and ciliated micro-organisms, and might serve as an efficient tool in the design of minuscule vehicles. Its potency is demonstrated by a solution for the flapping of thrips.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barta, E. & Liron, N. 1988 Slender body interactions for low Reynolds numbers. Part II. Body–body interactions. SIAM J. Appl. Maths 48, 12621280.CrossRefGoogle Scholar
2. Barta, E. & Weihs, D. 2004 Flapping comb-wings in Stokes flow. Report no. 2, Project no. 160036, Faculty of Aerospace Engineering, Technion.Google Scholar
3. Barta, E. & Weihs, D. 2006 Creeping flow around a finite row of slender bodies in close proximity. J. Fluid Mech. 551, 117.CrossRefGoogle Scholar
4. Bathellier, B., Barth, F. G., Albert, J. T. & Humphrey, J. A. C. 2005 Viscosity-mediated motion coupling between pairs of trichobothria on the leg of the spider Cupiennius salei . J. Compar. Physiol. A 191, 733746.CrossRefGoogle ScholarPubMed
5. Blake, J. R. & Sleigh, M. A. 1974 Mechanics of ciliary locomotion. Biol. Rev. 49, 85125.CrossRefGoogle ScholarPubMed
6. Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339398.CrossRefGoogle Scholar
7. Cheer, A. Y. L. & Koehl, M. A. R. 1987 Paddles and rakes: fluid flow through bristled appendages of small organisms. J. Theor. Biol. 129, 1739.CrossRefGoogle Scholar
8. Chwang, A. T. & Wu, T. Y. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flow. J. Fluid Mech. 67, 787815.CrossRefGoogle Scholar
9. Clarke, R. J., Jensen, O. E., Billingham, J. & Williams, P. M. 2006 Three-dimensional flow due to a microcantilever oscillating near a wall: an unsteady slender-body analysis. Proc. R. Soc. A 462, 912933.CrossRefGoogle Scholar
10. D’Elía, J., Battaglia, L., Sarraf, S. & Cardona, A. A boundary element method for oscillating Stokes flow at low frequencies around a rigid body. A boundary element method for oscillating Stokes flow at low frequencies around a rigid body. 2010In Mecánica Computacional, vol. XXIX (ed. E. Dvorkin, M. Goldschmit & M. Storti).Google Scholar
11. Dudley, R. 2000 The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press.CrossRefGoogle Scholar
12. Ellington, C. P. 1984 The aerodynamics of hovering insect flight. Part I. The quasi-steady analysis. Phil. Trans. R. Soc. Lond. B 305, 115.Google Scholar
13. Feng, J. & Joseph, D. D. 1995 The unsteady motion of solid bodies in creeping flows. J. Fluid Mech. 303, 83102.CrossRefGoogle Scholar
14. Fry, S. N., Sayaman, R. & Dickinson, M. H. 2005 The aerodynamics of hovering flight in Drosophila. J. Expl Biol. 208, 23032318.CrossRefGoogle ScholarPubMed
15. Gray, J. 1928 Ciliary Movement. Cambridge University Press.Google Scholar
16. Johnson, R. E. 1980 An improved slender-body theory for Stokes flow. J. Fluid Mech. 99, 411431.CrossRefGoogle Scholar
17. kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
18. Kohr, M. 2003 An indirect boundary integral method for an oscillatory Stokes flow problem. IJMMS 47, 29612976.Google Scholar
19. Lawrence, C. J. & Weinbaum, S. 1986 The force on an axisymmetric body in linearized, time-dependent motion: a new memory term. J. Fluid Mech. 171, 209218.CrossRefGoogle Scholar
20. Lawrence, C. J. & Weinbaum, S. 1988 The unsteady force on a body at low Reynolds number: the axisymmetric motion of a spheroid. J. Fluid Mech. 189, 463489.CrossRefGoogle Scholar
21. Liron, N. & Barta, E. 1992 Motion of a rigid particle in Stokes flow: a new second-kind boundary-integral equation formulation. J. Fluid Mech. 238, 579598.CrossRefGoogle Scholar
22. Loewenberg, M. 1994 Axisymmetric unsteady Stokes flow past an oscillating finite-length cylinder. J. Fluid Mech. 265, 265288.CrossRefGoogle Scholar
23. Pozrikidis, C. 1989a A singularity method for unsteady linearized flow. Phys. Fluids A 1 (9), 15081520.CrossRefGoogle Scholar
24. Pozrikidis, C. 1989b A study of linearized oscillatory flow past particles by the boundary-integral method. J. Fluid Mech. 202, 1741.CrossRefGoogle Scholar
25. Sane, S. P. & Dickinson, M. H. 2002 The control of flight force by a flapping wing: lift and drag production. J. Expl Biol. 204, 26072626.CrossRefGoogle Scholar
26. Shatz, L. F. 2004 Singularity method for oblate and prolate spheroids in Stokes and linearized oscillatory flow. Phys. Fluids 16 (3), 664677.CrossRefGoogle Scholar
27. smith, S. H. 1997 Slow oscillatory Stokes flow. Q. Appl. Math. 55, 122.CrossRefGoogle Scholar
28. Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulum. Trans. Camb. Phil. Soc. 9, 8.Google Scholar
29. Sunada, S., Takashima, H., Hattori, T., Yasuda, K. & Kawachi, K. 2002 Fluid-dynamic characteristics of a bristled wing. J. Expl Biol. 205, 27372744.CrossRefGoogle ScholarPubMed
30. Taylor, G. K. 2001 Mechanics and aerodynamics of insect flight control. Biol. Rev. Camb. Phil. Soc. 76, 449471.CrossRefGoogle ScholarPubMed
31. Tsai, C. C., Young, D. L., Fan, C. M. & Chen, C. W. 2006 MFS with time-dependent fundamental solutions for unsteady Stokes equations. Engng Anal. Bound. Elem. 30, 897908.CrossRefGoogle Scholar
32. Weihs, D. & Barta, E. 2008 Comb wings for flapping flight at extremely low Reynolds numbers. AIAA J. 46 (1), 285288.CrossRefGoogle Scholar
33. Zussman, E., Yarin, A. L. & Weihs, D. 2002 A micro-aerodynamic decelerator based on permeable surfaces of nanofibre mats. Exp. Fluids 33, 315320.CrossRefGoogle Scholar