Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T22:18:22.500Z Has data issue: false hasContentIssue false

The motion of a deforming capsule through a corner

Published online by Cambridge University Press:  08 April 2015

Lailai Zhu*
Affiliation:
Swedish e-Science Research Centre and Linné Flow Centre, KTH Mechanics, S-100 44 Stockholm, Sweden Laboratory of Fluid Mechanics and Instabilities, Station 9, EPFL, 1105 Lausanne, Switzerland
Luca Brandt
Affiliation:
Swedish e-Science Research Centre and Linné Flow Centre, KTH Mechanics, S-100 44 Stockholm, Sweden
*
Email address for correspondence: [email protected]

Abstract

A three-dimensional deformable capsule convected through a square duct with a corner is studied via numerical simulations. We develop an accelerated boundary integral implementation adapted to general geometries and boundary conditions. A global spectral method is adopted to resolve the dynamics of the capsule membrane developing elastic tension according to the neo-Hookean constitutive law and bending moments in an inertialess flow. The simulations show that the trajectory of the capsule closely follows the underlying streamlines independently of the capillary number. The membrane deformability, on the other hand, significantly influences the relative area variations, the advection velocity and the principal tensions observed during the capsule motion. The evolution of the capsule velocity displays a loss of the time-reversal symmetry of Stokes flow due to the elasticity of the membrane. The velocity decreases while the capsule is approaching the corner, as the background flow does, reaches a minimum at the corner and displays an overshoot past the corner due to the streamwise elongation induced by the flow acceleration in the downstream branch. This velocity overshoot increases with confinement while the maxima of the major principal tension increase linearly with the inverse of the duct width. Finally, the deformation and tension of the capsule are shown to decrease in a curved corner.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. C. & Swarztrauber, P. N.1997 Spherepack 2.0: a model development facility. NCAR Tech. Note.Google Scholar
Autrusson, N., Guglielmini, L., Lecuyer, S., Rusconi, R. & Stone, H. A. 2011 The shape of an elastic filament in a two-dimensional corner flow. Phys. Fluids 23, 063602.CrossRefGoogle Scholar
Barber, J. O., Alberding, J. P., Restrepo, J. M. & Secomb, T. W. 2008 Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann. Biomed. Engng 36 (10), 16901698.Google Scholar
Barthès-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100 (4), 831853.Google Scholar
Barthès-Biesel, D. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.CrossRefGoogle Scholar
Barthès-Biesel, D. 2011 Modeling the motion of capsules in flow. Curr. Opin. Colloid Interface 16 (1), 312.Google Scholar
Braunmüller, S., Schmid, L. & Franke, T. 2011 Dynamics of red blood cells and vesicles in microchannels of oscillating width. J. Phys.: Condens. Matter 23 (18), 184116.Google ScholarPubMed
Bruno, O. P. & Kunyansky, L. A. 2001 A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169 (1), 80110.Google Scholar
Chu, T. X., Salsac, A.-V., Leclerc, E., Barthès-Biesel, D., Wurtz, H. & Edwards-Lévy, F. 2011 Comparison between measurements of elasticity and free amino group content of ovalbumin microcapsule membranes: discrimination of the cross-linking degree. J. Colloid Interface Sci. 355 (1), 8188.CrossRefGoogle ScholarPubMed
Danker, G., Vlahovska, P. M. & Misbah, C. 2009 Vesicles in Poiseuille flow. Phys. Rev. Lett. 102 (14), 148102.Google Scholar
Doddi, S. K. & Bagchi, P. 2008 Lateral migration of a capsule in a plane Poiseuille flow in a channel. Intl J. Multiphase Flow 34 (10), 966986.Google Scholar
Dodson, W. R. & Dimitrakopoulos, P. 2009 Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an interfacial spectral boundary element algorithm for elastic membranes. J. Fluid Mech. 641, 263296.Google Scholar
Fischer, P., Lottes, J., Pointer, D. & Siegel, A. 2008a Petascale algorithms for reactor hydrodynamics. J. Phys. Conf. Ser. 125, 012076.Google Scholar
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008b nek5000 Web page. http://nek5000.mcs.anl.gov.Google Scholar
Fischer, T. & Schmid-Schönbein, H. 1978 Tank tread motion of red cell membranes in viscometric flow: behavior of intracellular and extracellular markers (with film). In Red Cell Rheology, pp. 347361. Springer.Google Scholar
Foessel, E., Walter, J., Salsac, A. V. & Barthès-Biesel, D. 2011 Influence of internal viscosity on the large deformation and buckling of a spherical capsule in a simple shear flow. J. Fluid Mech. 672, 477486.Google Scholar
Freund, J. B. 2007 Leukocyte margination in a model microvessel. Phys. Fluids 19, 023301.Google Scholar
Freund, J. B. 2014 Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46 (1), 6795.CrossRefGoogle Scholar
Freund, J. B. & Zhao, H. 2010 A high-resolution fast boundary-integral method for multiple interacting blood cells. In Computational Hydrodynamics of Capsules and Biological Cells (ed. Pozrikidis, C.), CRC Press.Google Scholar
Gaehtgens, P., Dührssen, C. & Albrecht, K. H. 1980 Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood Cells 6 (4), 799817.Google Scholar
Goldsmith, H. L.1971 Red cell motions and wall interactions in tube flow. In Fed. Proc., vol. 30, p. 1578.Google Scholar
Goldsmith, H. L., Bell, D. N., Braovac, S., Steinberg, A. & McIntosh, F. 1995 Physical and chemical effects of red cells in the shear-induced aggregation of human platelets. Biophys. J. 69 (4), 15841595.Google Scholar
Goldsmith, H. L. & Marlow, J. 1972 Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions. Phil. Trans. R. Soc. Lond. B 182 (1068), 351384.Google Scholar
Green, A. E. & Adkins, J. E. 1970 Large Elastic Deformations, 2nd edn. Oxford University Press.Google Scholar
Hanahan, D. & Weinberg, R. A. 2000 The hallmarks of cancer. Cell 100 (1), 5770.Google Scholar
Hernández-Ortiz, J. P., de Pablo, J. J. & Graham, M. D. 2007 Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry. Phys. Rev. Lett. 98 (14), 140602.Google Scholar
Hu, X.-Q., Salsac, A.-V. & Barthès-Biesel, D. 2011 Flow of a spherical capsule in a pore with circular or square cross-section. J. Fluid Mech. 705, 176194.Google Scholar
Hu, X.-Q., Sévénié, B., Salsac, A.-V., Leclerc, E. & Barthès-Biesel, D. 2013 Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: effects of the membrane constitutive law. Phys. Rev. E 87 (6), 063008.Google Scholar
Huang, Q. & Cruse, T. A. 1993 Some notes on singular integral techniques in boundary element analysis. Intl J. Numer. Meth. Engng 36, 26432659.Google Scholar
Johnston, P. R. & Elliott, D. 2005 A sinh transformation for evaluating nearly singular boundary element integrals. Intl J. Numer. Meth. Engng 62 (4), 564578.Google Scholar
Kaoui, B., Biros, G. & Misbah, C. 2009 Why do red blood cells have asymmetric shapes even in a symmetric flow? Phys. Rev. Lett. 103 (18), 188101.Google Scholar
Kessler, S., Finken, R. & Seifert, U. 2008 Swinging and tumbling of elastic capsules in shear flow. J. Fluid Mech. 605, 207226.Google Scholar
Kumar, A. & Graham, M. D. 2011 Segregation by membrane rigidity in flowing binary suspensions of elastic capsules. Phys. Rev. E 84 (6), 066316.CrossRefGoogle ScholarPubMed
Kumar, A. & Graham, M. D. 2012 Accelerated boundary integral method for multiphase flow in non-periodic geometries. J. Comput. Phys. 231, 66826713.CrossRefGoogle Scholar
Kuriakose, S. & Dimitrakopoulos, P. 2011 Motion of an elastic capsule in a square microfluidic channel. Phys. Rev. E 84 (1), 011906.Google Scholar
Kuriakose, S. & Dimitrakopoulos, P. 2013 Deformation of an elastic capsule in a rectangular microfluidic channel. Soft Matt. 9 (16), 42844296.Google Scholar
Lac, E., Morel, A. & Barthès-Biesel, D. 2007 Hydrodynamic interaction between two identical capsules in simple shear flow. J. Fluid Mech. 573, 149169.Google Scholar
Lashgari, I., Picano, F., Breugem, W.-P. & Brandt, L. 2014 Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. Phys. Rev. Lett. 113, 254502.Google Scholar
Lauga, E., Stroock, A. D. & Stone, H. A. 2004 Three-dimensional flows in slowly varying planar geometries. Phys. Fluids 16, 30513062.Google Scholar
Le, D. V. 2010 Effect of bending stiffness on the deformation of liquid capsules enclosed by thin shells in shear flow. Phys. Rev. E 82 (1), 016318.Google Scholar
Lefebvre, Y., Leclerc, E., Barthès-Biesel, D., Walter, J. & Edwards-Lévy, F. 2008 Flow of artificial microcapsules in microfluidic channels: a method for determining the elastic properties of the membrane. Phys. Fluids 20, 123102.Google Scholar
Lei, H., Fedosov, D., Caswell, B. & Karniadakis, G. 2013 Blood flow in small tubes: quantifying the transition to the non-continuum regime. J. Fluid Mech. 722, 214239.Google Scholar
Li, X. & Sarkar, K. 2008 Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane. J. Comput. Phys. 227 (10), 49985018.CrossRefGoogle Scholar
Maday, Y. & Patera, A. T. 1989 Spectral element methods for the incompressible Navier–Stokes equations. In State-of-the-Art Surveys on Computational Mechanics (A90-47176 21-64), pp. 71143. American Society of Mechanical Engineers, New York, Research supported by DARPA, vol. 1, pp. 71–143.Google Scholar
Mendez, S., Gibaud, E. & Nicoud, F. 2014 An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers. J. Comput. Phys. 256, 465483.Google Scholar
Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 028104.Google Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.Google Scholar
Noguchi, H., Gompper, G., Schmid, L., Wixforth, A. & Franke, T. 2010 Dynamics of fluid vesicles in flow through structured microchannels. Europhys. Lett. 89 (2), 28002.Google Scholar
Özkaya, A. N. 1986 Viscous Flow of Particles in Tubes: Lubrication Theory and Finite Element Models. Columbia University.Google Scholar
Park, S. Y. & Dimitrakopoulos, P. 2013 Transient dynamics of an elastic capsule in a microfluidic constriction. Soft Matt. 9 (37), 88448855.Google Scholar
Pinelli, A., Naqavi, I., Piomelli, U. & Favier, J. 2010 Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J. Comput. Phys. 229 (24), 90739091.CrossRefGoogle Scholar
Pozrikidis, C. 1995 Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. J. Fluid Mech. 297, 123152.Google Scholar
Pozrikidis, C. 2001 Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 440, 269291.Google Scholar
Pozrikidis, C. 2003 Numerical simulation of the flow-induced deformation of red blood cells. Ann. Biomed. Engng 31 (10), 11941205.Google Scholar
Pozrikidis, C. 2005a Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17 (3), 031503.CrossRefGoogle Scholar
Pozrikidis, C. 2005b Numerical simulation of cell motion in tube flow. Ann. Biomed. Engng 33 (2), 165178.Google Scholar
Pranay, P., Anekal, S. G., Hernandez-Ortiz, J. P. & Graham, M. D. 2010 Pair collisions of fluid-filled elastic capsules in shear flow: effects of membrane properties and polymer additives. Phys. Fluids 22, 123103.CrossRefGoogle Scholar
Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117143.Google Scholar
Rusconi, R., Lecuyer, S., Guglielmini, L. & Stone, H. A. 2010 Laminar flow around corners triggers the formation of biofilm streamers. J. R. Soc. Interface 7 (50), 12931299.Google Scholar
Schrader, L.-U., Brandt, L., Mavriplis, C. & Henningson, D. S. 2010 Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge. J. Fluid Mech. 653, 245271.Google Scholar
Secomb, T. W. & Skalak, R. 1982 A two-dimensional model for capillary flow of an asymmetric cell. Microvasc. Res. 24 (2), 194203.CrossRefGoogle ScholarPubMed
Shi, L., Pan, T. W. & Glowinski, R. 2012 Lateral migration and equilibrium shape and position of a single red blood cell in bounded poiseuille flows. Phys. Rev. E 86, 056308.Google Scholar
Skalak, R. & Branemark, P. I. 1969 Deformation of red blood cells in capillaries. Science 164 (3880), 717719.Google Scholar
Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13 (3), 245264.Google Scholar
Spiga, M. & Morino, G. L. 1994 A symmetric solution for velocity profile in laminar flow through rectangular ducts. Intl Commun. Heat Mass Transfer 21 (4), 469475.CrossRefGoogle Scholar
Springer, T. A. 1994 Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301314.CrossRefGoogle ScholarPubMed
Swarztrauber, P. N. & Spotz, W. F. 2000 Generalized discrete spherical harmonic transforms. J. Comput. Phys. 159 (2), 213230.Google Scholar
Vlahovska, P. M., Young, Y. N., Danker, G. & Misbah, C. 2011 Dynamics of a non-spherical microcapsule with incompressible interface in shear flow. J. Fluid Mech. 678, 221247.Google Scholar
Walter, J., Salsac, A. V. & Barthès-Biesel, D. 2011 Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes. J. Fluid Mech. 676, 318347.Google Scholar
Walter, J., Salsac, A.-V., Barthès-Biesel, D. & Tallec, P. Le. 2010 Coupling of finite element and boundary integral methods for a capsule in a stokes flow. Intl J. Numer. Meth. Engng 83 (7), 829850.CrossRefGoogle Scholar
Wan, J., Ristenpart, W. & Stone, H. 2008 Dynamics of shear-induced ATP release from red blood cells. Proc. Natl Acad. Sci. USA 105 (43), 1643216437.Google Scholar
Woolfenden, H. C. & Blyth, M. G. 2011 Motion of a two-dimensional elastic capsule in a branching channel flow. J. Fluid Mech. 669, 331.Google Scholar
Zarda, P. R., Chien, S. & Skalak, R. 1977 Interaction of viscous incompressible fluid with an elastic body. In Computational Methods for Fluid–Solid Interaction Problems (ed. Belytschko, T. & Geers, T. L.), pp. 6582. ASME.Google Scholar
Zhao, H., Isfahani, A. H. G., Olson, L. N. & Freund, J. B. 2010 A spectral boundary integral method for flowing blood cells. J. Comput. Phys. 229, 37263744.Google Scholar
Zhu, L., Lauga, E. & Brandt, L. 2013 Low-Reynolds number swimming in a capillary tube. J. Fluid Mech. 726, 285311.Google Scholar
Zhu, L., Rorai, C., Dhrubaditya, M. & Brandt, L. 2014 A microfluidic device to sort capsules by deformability: a numerical study. Soft Matt. 10 (39), 77057711.Google Scholar

Zhu and Brandt supplementary movie

The motion of a stiff capsule (Ca=0.0375) convected in a square duct with a 90 degree sharp corner. Half of the fluid domain is shown.

Download Zhu and Brandt supplementary movie(Video)
Video 5.5 MB

Zhu and Brandt supplementary movie

The motion of a floppy capsule (Ca=0.3) convected in a square duct with a 90 degree sharp corner. Half of the fluid domain is shown.

Download Zhu and Brandt supplementary movie(Video)
Video 6.6 MB