Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T19:01:04.187Z Has data issue: false hasContentIssue false

Motion of a capsule in a cylindrical tube: effect of membrane pre-stress

Published online by Cambridge University Press:  08 October 2007

YANNICK LEFEBVRE
Affiliation:
UMR CNRS 6600, Biomécanique et Génie Biomédical, Université de Technologie de Compiègne, France
DOMINIQUE BARTHÈS-BIESEL
Affiliation:
UMR CNRS 6600, Biomécanique et Génie Biomédical, Université de Technologie de Compiègne, France

Abstract

We present a numerical model of the axisymmetric flow of an initially spherical capsule in a co-axial cylindrical tube. The capsule consists of a liquid droplet enclosed by a thin hyper-elastic membrane that is assumed to obey different membrane constitutive equations such as Mooney–Rivlin, Skalak et al. (1973) or Evans & Skalak (1980) laws. It is further assumed that the capsule may be subjected to some isotropic pre-stress due to initial swelling. We compute the steady flow of the capsule inside the tube as a function of the size ratio between the capsule and tube radii, the amount of pre-swelling and the membrane constitutive law. We thus determine the deformed profile geometry and specifically the onset of the curvature inversion at the back of the particle. We show that for a given size ratio, the critical flow rate at which the back curvature changes is strongly dependent on pre-inflation. The elastic tension level in the membrane as well as the additional pressure drop created by the presence of the particle are also computed. The numerical results are then compared to experimental observations of capsules with alginate membranes as they flow in small tubes (Risso. et al. 2006). It is found that the experimental capsules were probably pre-inflated by about 3% and that their membrane is best modelled by the Skalak et al. law.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barthès-Biesel, D. 2003 Modelling and Simulation of Capsules and Biological Cells, pp. 131. Chapman & Hall/CRC.Google Scholar
Barthès-Biesel, D., Diaz, A., Dhenin, E. 2002 Effect of constitutive laws for two dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211222.CrossRefGoogle Scholar
Carin, M., Barthès-Biesel, D., Edwards-Levy, F., Postel, C., Andrei, C. D. 2003 Compression of biocompatible liquid filled hsa-alginate capsules: determination of the membrane mechanical properties. Biotech. Bioengng 82, 207.CrossRefGoogle ScholarPubMed
Diaz, A. & Barthès-Biesel, D. 2002 Entrance of a bioartificial capsule in a pore. Comput. Model. Engng Sci. 3 (3), 321337.Google Scholar
Diaz, A., Pelekasis, N. A. & Barthès-Biesel, D. 2000 Transient response of a capsule subjected to varying flow conditions: effect of internal fluid viscosity and membrane elasticity. Phys. Fluids 12, 948957.CrossRefGoogle Scholar
Eggleton, C. D. & Popel, A. S. 1998 Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10, 18341845.CrossRefGoogle Scholar
Evans, E. A. & Skalak, R. 1980 Mechanics and Thermodynamics of Biomembranes. CRC.Google Scholar
Kraus, M., Wintz, W., Seifert, U. & Lipowsky, R. 1996 Fluid vesicle in shear flow. Phys. Rev. Lett. 77, 36853688.CrossRefGoogle ScholarPubMed
Kühtreiber, W. M., Lanza, R. P., Chick, W. L. 1998 Cell Encapsulation Technology and Therapeutics. Birkhäuser.Google Scholar
Kwak, S. & Pozrikidis, C. 1998 Adaptive triangulation of evolving, closed or open surfaces by the advancing-front method. J. Comput. Phys. 145, 6188.CrossRefGoogle Scholar
Lac, E. & Barthès-Biesel, D. 2005 Deformation of a capsule in simple shear flow: effect of membrane prestress. Phys. Fluids 17, 07210510721058.CrossRefGoogle Scholar
Lac, E., Barthès-Biesel, D., Pelekasis, N. A., Tsamopoulos, J. 2004 Spherical capsules in three-dimensional unbounded stokes flow: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303334.CrossRefGoogle Scholar
Li, X. Z., Barthès-Biesel, D., Helmy, A. 1988 Large deformations and burst of a capsule freely suspended in an elongational flow. J. Fluid Mech. 187, 179196.CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Pozrikidis, C. 2003 a Deformed shapes of axisymmetric capsules enclosed by elastic membranes. J. Engng Maths 45, 169182.CrossRefGoogle Scholar
Pozrikidis, C. 2003 b Modeling and Simulation of Capsules and Biological Cells, pp. 35102. Chapman & Hall/CRC.CrossRefGoogle Scholar
Pozrikidis, C. 2005 Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17, 031503/1031503/14.CrossRefGoogle Scholar
Quéguiner, C. & Barthès-Biesel, D. 1997 Axisymmetric motion of capsules through cylindrical channels. J. Fluid Mech. 348, 349376.CrossRefGoogle Scholar
Rachik, M., Barthès-Biesel, D., Carin, M., Edwards-Levy, F. 2006 Identification of a bioartificial microcapsule wall material parameter with an inverse method and the compression test. J. Colloid Interface Sci. 301, 217226.CrossRefGoogle Scholar
Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of capsule viscosity. J. Fluid Mech. 361, 117143.CrossRefGoogle Scholar
Risso, F. & Carin, M. 2004 Compression of a capsule: Mechanical laws of membranes with negligible bending stiffness. Phys. Rev. E 69, 061601061608.Google ScholarPubMed
Risso, F., Collé-Paillot, F. & Zagzoule, M. 2006 Experimental investigation of a bioartificial capsule flowing in a narrow tube. J. Fluid Mech. 547, 149173.CrossRefGoogle Scholar
Secomb, T. W. 1995 Mechanics of blood flow in the microcirculation. Symp Soc Expl Biol. 49, 305321.Google ScholarPubMed
Sherwood, J. D., Risso, F., Collé-Paillot, F., Edwards-Lévy, F. & Lévy, M. C. 2003 Transport rates through a capsule membrane to attain Donnan equilibrium. J. Colloid Interface Sci. 263, 202212.CrossRefGoogle ScholarPubMed
Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13, 245264.CrossRefGoogle ScholarPubMed