Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T07:24:03.476Z Has data issue: false hasContentIssue false

The motion of a buoyant vortex filament

Published online by Cambridge University Press:  19 October 2018

Ching Chang*
Affiliation:
Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
Stefan G. Llewellyn Smith
Affiliation:
Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0213, USA
*
Email address for correspondence: [email protected]

Abstract

We investigate the motion of a thin vortex filament in the presence of buoyancy. The asymptotic model of Moore & Saffman (Phil. Trans. R. Soc. Lond. A, vol. 272, 1972, pp. 403–429) is extended to take account of buoyancy forces in the force balance on a vortex element. The motion of a buoyant vortex is given by the transverse component of force balance, while the tangential component governs the dynamics of the structure in the core. We show that the local acceleration of axial flow is generated by the external pressure gradient due to gravity. The equations are then solved for vortex rings. An analytic solution for a buoyant vortex ring at a small initial inclination is obtained and asymptotically agrees with the literature.

Type
JFM Rapids
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Callegari, A. J. & Ting, L. 1978 Motion of a curved vortex filament with decaying vortical core and axial velocity. SIAM J. Appl. Maths 35, 148174.Google Scholar
Cheng, M., Lou, J. & Lim, T. T. 2013 Motion of a bubble ring in a viscous fluid. Phys. Fluids 25, 067104.Google Scholar
Hicks, W. M. 1884 On the steady motion and small vibrations of a hollow vortex. Phil. Trans. R. Soc. Lond. A 175, 161195.Google Scholar
Kelvin, Lord 1867 The translatory velocity of a circular vortex ring. Phil. Mag. 33, 511512.Google Scholar
Leonard, A. 2010 On the motion of thin vortex tube. Theor. Comput. Fluid Dyn. 24, 369375.Google Scholar
Lundgren, T. S. & Mansour, N. N. 1991 Vortex ring bubbles. J. Fluid Mech. 224, 177196.Google Scholar
Marten, K., Shariff, K., Psarakos, S. & White, D. J. 1996 Ring bubbles of dolphins. Sci. Am. 275, 8287.Google Scholar
Moore, D. W. 1972 Finite amplitude waves on aircraft trailing vortices. Aeronaut. Q. 23, 307314.Google Scholar
Moore, D. W. & Saffman, P. G. 1972 The motion of a vortex filament with axial flow. Phil. Trans. R. Soc. Lond. A 272, 403429.Google Scholar
Pedley, T. J. 1968 The toroidal bubble. J. Fluid Mech. 32, 97112.Google Scholar
Pullin, D. I. & Saffman, P. G. 1998 Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30, 3151.Google Scholar
Rosenhead, L. 1930 The spread of vorticity in the wake behind a cylinder. Proc. R. Soc. Lond. A 127, 590612.Google Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Schwarz, K. W. 1985 Three-dimensional vortex dynamics in superfluid He: line–line and line–boundary interactions. Phys. Rev. B 31, 57825804.Google Scholar
Shariff, K., Leonard, A. & Ferziger, J.1989 Dynamics of a class of vortex rings. NASA Tech. Rep. 102257.Google Scholar
Turner, J. S. 1957 Buoyant vortex rings. Proc. R. Soc. Lond. A 239, 6175.Google Scholar