Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T06:14:50.331Z Has data issue: false hasContentIssue false

Monolayer slip effects on the dynamics of a lipid bilayer vesicle in a viscous flow

Published online by Cambridge University Press:  18 March 2010

JONATHAN T. SCHWALBE
Affiliation:
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60202, USA
PETIA M. VLAHOVSKA
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
MICHAEL J. MIKSIS*
Affiliation:
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60202, USA
*
Email address for correspondence: [email protected]

Abstract

The dynamics of a closed lipid bilayer membrane (a vesicle) in a linear viscous flow is investigated. The model accounts for the transport of lipids along each monolayer and intermonolayer friction, as well as the membrane fluidity, incompressibility and resistance to bending. Assuming a nearly spherical vesicle, the leading order analysis results in a nonlinear coupled system of equations for the dynamics of the shape and the bilayer density difference. Multiple solution states are found as a function of viscosity ratio and the monolayer slip coefficient. The dynamics and stability of these solutions is discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abkarian, M. & Viallat, A. 2008 Vesicles and red blood cells in shear flow. Soft Matter 4, 653657.CrossRefGoogle ScholarPubMed
Alberts, B. 2002 Molecular Biology of the Cell. Garland Science.Google Scholar
Allen, T. M. & Cullis, P. R. 2004 Drug delivery systems: entering the mainstream. Science 303, 18181822.CrossRefGoogle ScholarPubMed
Aris, R. 1989 Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover.Google Scholar
Barthes-Biesel, D. 1991 Role of interfacial properties on the motion and deformation of capsuled in shear flow. Physica A 172, 103124.CrossRefGoogle Scholar
Barthes-Biesel, B. & Rallison, J. 1981 The time-dependent deformation of a capsuel freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.CrossRefGoogle Scholar
Brown, F. L. 2008 Elastic modeling of biomembranes and lipid bilayers. Annu. Rev. Phys. Chem. 59, 685712.CrossRefGoogle ScholarPubMed
Cai, W. & Lubensky, T. 1995 Hydrodynamics and dynamic fluctuations of fluid membranes. Phys. Rev. E 52 (4).CrossRefGoogle ScholarPubMed
Danker, G., Biben, T., Podgorski, T., Verdier, C. & Misbah, C. 2007 Dynamics and rheology of a dilute suspension of vesicles: higher order theory. Phys. Rev. E 76, 041905.CrossRefGoogle ScholarPubMed
Danker, G., Vlahovska, P. M. & Misbah, C. 2009 Vesicles in Poiseuille flow. Phys. Rev. Lett. 102, 148102.CrossRefGoogle ScholarPubMed
Deschamps, J., Kantsler, V. & Steinberg, V. 2009 Phase diagram of single vesicle dynamical states in shear flow. Phys. Rev. Lett. 102, 118105.CrossRefGoogle ScholarPubMed
Dimova, R., Aranda, S., Bezlyepkina, N., Nikolov, V., Riske, K. A. & Lipowsky, R. 2006 A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy. J. Phys.: Condens. Matter 18, S1151S1176.Google ScholarPubMed
Dobereiner, H.-G., Evans, E., Kraus, M., Seifert, U. & Wortis, M. 1997 Mapping vesicle shapes into phase drigram: a comparison of experiment and theory. Phys. Rev. E 55 (4), 44584474.CrossRefGoogle Scholar
Edwards, D. A., Brenner, H. & Wasan, D. T. 1991 Interfacial Transport Processes and Rheology. Butterworth-Heinemann.Google Scholar
Evans, E., Yeung, A., Waugh, R. & Song, J. 1992 Dynamic coupling and nonlocal curvature elasticity in bilayer membranes. In The Structure and Conformation of Amphiphilic Membranes, vol. 66, (ed. Lipowsky, R., Richter, D. & Kremer, K.) pp. 148153. Springer Proceedings in Physics.CrossRefGoogle Scholar
Goldstein, R., Nelson, P., Powers, T. & Seifert, U. 1996 Front propogation in the pearling instability of tubular vesicles. J. Phys. II France 6, 767796.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.CrossRefGoogle Scholar
Helfrich, W. 1973 Elastic properties of lipid bilayers. Z. Naturforsch 28c, 693703.CrossRefGoogle Scholar
Jenkins, J. T. 1977 Static equilibrium configurations of a model red blood cell. J. Math. Biol. 4, 149169.CrossRefGoogle ScholarPubMed
Kantsler, V. & Steinberg, V. 2005 Orientation and dynamics of a vesicle in tank-treading motion in shear flow. Phys. Rev. Lett. 95.CrossRefGoogle ScholarPubMed
Kantsler, V. & Steinberg, V. 2006 Transition to toumbling and two regimes of toumbling motion of a vesicle in shear flow. Phys. Rev. Lett. 96.CrossRefGoogle ScholarPubMed
Lebedev, V. V., Turitsyn, K. & Vergeles, S. S. 2008 Nearly spherical vesicles in an external flow. New J. Phys. 10 (043044).CrossRefGoogle Scholar
Lipowsky, R. 1991 The conformation of membranes. Nature 349, 475481.CrossRefGoogle ScholarPubMed
Mader, M.-A., Vitkova, V., Abkarian, M., Viallat, A. & Podgorski, T. 2006 Dynamics of viscous vesicles in shear flow. Eur. Phys. J. E 19, 389397.CrossRefGoogle ScholarPubMed
Merkel, R., Sackmann, E. & Evans, E. 1989 Molecular friction and epitactic coupling between monolayers in supported bilayers. J. Phys. France 50, 15351555.CrossRefGoogle Scholar
Miao, L., Lomholt, M. & Kleis, J. 2002 Dynamics of shape fluctuations of quasi-spherical vesicles revisited. Eur. Phys. J. E 9, 143160.CrossRefGoogle ScholarPubMed
Milner, S. & Safran, S. 1987 Dynamical fluctuations of droplet microemulsions and vesicles. Phys. Rev. A 36 (9), 43714379.CrossRefGoogle ScholarPubMed
Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Physical Rev. Lett. 96, 028104.CrossRefGoogle ScholarPubMed
Morse, P. & Feshbach, H. 1953 Methods of Theoritical Physics. McGraw-Hill.Google Scholar
Olla, P. 2000 The behavior of closed inextensible membranes in linear and quadratic shear flows. Physica A 278, 87106.CrossRefGoogle Scholar
den Otter, W. & Shkulipa, S. 2007 Intermonolayer friction and surface shear viscosity of lipid bilayer membranes. Biophys. J. 93, 423433.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 2003 Modeling and Simmulation of Capsules and Biological Cells. CRC Press.CrossRefGoogle Scholar
Raphael, R. & Waugh, R. 1996 Accelerated interleaflet transport of phosphatidylcholine molecules in membranes under deformation. Biophys. J. 71, 13741388.CrossRefGoogle ScholarPubMed
Schneider, M., Jenkins, J. & Webb, W. 1984 Thermal fluctuations of large quasi-spherical biomolecular phospholipid vesicles. J. Phys. 45, 14571472.CrossRefGoogle Scholar
Seifert, U. 1997 Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1), 13137.CrossRefGoogle Scholar
Seifert, U. 1999 Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur. Phys. J. B 8, 405415.CrossRefGoogle Scholar
Seifert, U., Berndl, K. & Lipowsky, R. 1991 Shape transformation of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A 44 (2), 11821202.CrossRefGoogle ScholarPubMed
Seifert, U. & Langer, S. 1993 Viscous modes of fluid bilayer membranes. Europhys. Lett. 23 (1), 7176.CrossRefGoogle Scholar
Stone, H. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2 (1), 111112.CrossRefGoogle Scholar
Vlahovska, P. & Gracia, R. 2007 Dynamics of a viscous vesicle in linear flows. Phys. Rev. E 75 (016313).CrossRefGoogle ScholarPubMed
Yeung, A. & Evans, E. 1995 Unexpected dynamics in shape fluctuations of bilayer vesicles. J. Phys. II France 5, 15011523.Google Scholar