Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T22:05:00.110Z Has data issue: false hasContentIssue false

Molecular kinetic modelling of nanoscale slip flow using a continuum approach

Published online by Cambridge University Press:  23 March 2022

Baochao Shan
Affiliation:
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China
Peng Wang
Affiliation:
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China
Runxi Wang
Affiliation:
School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK
Yonghao Zhang*
Affiliation:
School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK
Zhaoli Guo*
Affiliation:
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China
*
Email addresses for correspondence: [email protected]; [email protected]
Email addresses for correspondence: [email protected]; [email protected]

Abstract

One major challenge for a continuum model to describe nanoscale confined fluid flows is the lack of a boundary condition that can capture molecular-scale slip behaviours. In this work, we propose a molecular-kinetic boundary condition to model the fluid–surface and fluid–fluid molecular interactions using the Lennard–Jones type potentials, and add a mean-field force to the momentum equation. This new boundary condition is then applied to investigate the nanoscale Couette and Poiseuille flows using the generalised hydrodynamic model developed by Guo et al. (Phys. Fluids, volume 18, issue 6, 2006a, 067107). The accuracy of our model is validated by molecular dynamics simulations and other models for a broad range of parameters including density, shear rate, wettability and channel width. Our simulation results reveal some unexpected and unintuitive slip behaviours at the nanoscale, including the epitaxial layering structure of fluids and the slip length minimum. The slip length minimum, which is analogous to the Knudsen minimum, can be explained by competing fluid–solid and fluid–fluid molecular interactions as density varies. A new scaling law is proposed for the slip length to account for not only the competing effect between the fluid–solid and fluid–fluid molecular interactions, but also many other physical mechanisms including the competition between the fluid internal potential energy and kinetic energy, and the confinement effect. While the slip length is nearly constant at the low shear rates, it increases rapidly at the high shear rates due to friction reduction. These molecular-scale slip behaviours are caused by energy corrugations at the fluid–solid interface where strong fluid–solid and fluid–fluid molecular interactions interplay.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, N.Y., Hibberd, S. & Power, H. 2017 Dynamics of a small gap gas lubricated bearing with Navier slip boundary conditions. J. Fluid Mech. 818, 6899.CrossRefGoogle Scholar
Barisik, M. & Beskok, A. 2011 Equilibrium molecular dynamics studies on nanoscale-confined fluids. Microfluid. Nanofluid. 11 (3), 269282.CrossRefGoogle Scholar
Barrat, J.L. & Bocquet, L. 1999 Large slip effect at a nonwetting fluid–solid interface. Phys. Rev. Lett. 82 (23), 46714674.CrossRefGoogle Scholar
Berthelot, D. 1898 Sur le mélange des gaz. Compt. Rendus 126, 17031706.Google Scholar
Bhadauria, R., Sanghi, T. & Aluru, N.R. 2015 Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water. J. Chem. Phys. 143 (17), 174702.CrossRefGoogle ScholarPubMed
Bitrián, V. & Principe, J. 2018 Driving mechanisms and streamwise homogeneity in molecular dynamics simulations of nanochannel flows. Phys. Rev. Fluids 3 (1), 014202.CrossRefGoogle Scholar
Bitsanis, I., Magda, J.J., Tirrell, M. & Davis, H.T. 1987 Molecular dynamics of flow in micropores. J. Chem. Phys. 87 (3), 17331750.CrossRefGoogle Scholar
Bitsanis, I., Vanderlick, T.K., Tirrell, M. & Davis, H.T. 1988 A tractable molecular theory of flow in strongly inhomogeneous fluids. J. Chem. Phys. 89 (5), 31523162.CrossRefGoogle Scholar
Blake, T.D. & De Coninck, J. 2002 The influence of solid–liquid interactions on dynamic wetting. Adv. Colloid Interface Sci. 96 (1–3), 2136.CrossRefGoogle ScholarPubMed
Cai, J.C., Zhang, Z.E., Wei, W., Guo, D.M., Li, S. & Zhao, P.Q. 2019 The critical factors for permeability-formation factor relation in reservoir rocks: pore-throat ratio, tortuosity and connectivity. Energy 188, 116051.CrossRefGoogle Scholar
Cao, B.Y., Chen, M. & Guo, Z.Y. 2006 Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation. Phys. Rev. E 74 (6 Pt 2), 066311.CrossRefGoogle ScholarPubMed
Chapman, S & Cowling, T.G. 1970 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Cieplak, M., Koplik, J. & Banavar, J.R. 2001 Boundary conditions at a fluid–solid interface. Phys. Rev. Lett. 86 (5), 803806.CrossRefGoogle Scholar
Dalton, B.A., Glavatskiy, K.S., Daivis, P.J. & Todd, B.D. 2015 Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. II. Sinusoidally driven shear and multisinusoidal inhomogeneity. Phys. Rev. E 92 (1), 012108.CrossRefGoogle ScholarPubMed
Davis, T.H. 1987 Kinetic theory of flow in strongly inhomogeneous fluids. Chem. Engng Commun. 58 (1–6), 413430.CrossRefGoogle Scholar
De Coninck, J. & Blake, T.D. 2008 Wetting and molecular dynamics simulations of simple liquids. Annu. Rev. Mater. Res. 38, 122.CrossRefGoogle Scholar
Evans, D.J. & Holian, B.L. 1985 The nose-hoover thermostat. J. Chem. Phys. 83 (8), 40694074.CrossRefGoogle Scholar
Falk, K., Sedlmeier, F., Joly, L., Netz, R.R. & Bocquet, L. 2010 Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano. Lett. 10 (10), 40674073.CrossRefGoogle ScholarPubMed
Germanou, L., Ho, M.T., Zhang, Y.H. & Wu, L. 2018 Intrinsic and apparent gas permeability of heterogeneous and anisotropic ultra-tight porous media. J. Nat. Gas Sci. Engng 60, 271283.CrossRefGoogle Scholar
Glasstone, S., Laidler, K.J.S. & Eyring, H. 1941 The theory of rate processes: The kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena. Tech. Rep. McGraw-Hill Book Company.Google Scholar
Granick, S., Zhu, Y.X. & Lee, H. 2003 Slippery questions about complex fluids flowing past solids. Nat. Mater. 2 (4), 221227.CrossRefGoogle ScholarPubMed
Guo, Z.L., Zhao, T.S. & Shi, Y. 2005 Simple kinetic model for fluid flows in the nanometer scale. Phys. Rev. E 71 (3), 035301.CrossRefGoogle ScholarPubMed
Guo, Z.L., Zhao, T.S. & Shi, Y. 2006 a Generalized hydrodynamic model for fluid flows: from nanoscale to macroscale. Phys. Fluids 18 (6), 067107.CrossRefGoogle Scholar
Guo, Z.L., Zhao, T.S., Xu, C. & Shi, Y. 2006 b Simulation of fluid flows in the nanometer: kinetic approach and molecular dynamic simulation. Intl J. Comput. Fluid Dyn. 20 (6), 361367.CrossRefGoogle Scholar
Heiranian, M. & Aluru, N.R. 2020 Nanofluidic transport theory with enhancement factors approaching one. ACS Nano 14 (1), 272281.CrossRefGoogle ScholarPubMed
Henot, M., Grzelka, M., Zhang, J., Mariot, S., Antoniuk, I., Drockenmuller, E., Leger, L. & Restagno, F. 2018 Temperature-controlled slip of polymer melts on ideal substrates. Phys. Rev. Lett. 121 (17), 177802.CrossRefGoogle ScholarPubMed
Ho, M.T., Li, J., Su, W., Wu, L., Borg, M., Li, Z. & Zhang, Y.H. 2020 Rarefied flow separation in microchannel with bends. J. Fluid Mech. 901, A26.CrossRefGoogle Scholar
Ho, T.A., Papavassiliou, D.V., Lee, L.L. & Striolo, A. 2011 Liquid water can slip on a hydrophilic surface. Proc. Natl Acad. Sci. USA 108 (39), 1617016175.CrossRefGoogle ScholarPubMed
Ho, M.T., Zhu, L., Wu, L., Wang, P., Guo, Z., Li, Z. & Zhang, Y.H. 2019 b A multi-level parallel solver for rarefied gas flows in porous media. Comput. Phys. Commun. 234, 1425.CrossRefGoogle Scholar
Ho, M.T., Zhu, L., Wu, L., Wang, P., Guo, Z., Ma, J. & Zhang, Y.H. 2019 a Pore-scale simulations of rarefied gas flows in ultra-tight porous media. Fuel 249, 341351.CrossRefGoogle Scholar
Hocking, L.M. 1976 A moving fluid interface on a rough surface. J. Fluid Mech. 76 (4), 801817.CrossRefGoogle Scholar
Holt, J.K., Park, H.G., Wang, Y.M., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A. & Bakajin, O. 2006 Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312 (5776), 10341037.CrossRefGoogle ScholarPubMed
Hsu, H.Y. & Patankar, N.A. 2010 A continuum approach to reproduce molecular-scale slip behaviour. J. Fluid Mech. 645, 5980.CrossRefGoogle Scholar
Kannam, S.K., Todd, B.D., Hansen, J.S. & Daivis, P.J. 2013 How fast does water flow in carbon nanotubes? J. Chem. Phys. 138 (9), 094701.CrossRefGoogle ScholarPubMed
Kavokine, N., Netz, R.R. & Bocquet, L. 2021 Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377410.CrossRefGoogle Scholar
Keerthi, A., et al. 2018 Ballistic molecular transport through two-dimensional channels. Nature 558 (7710), 420424.CrossRefGoogle ScholarPubMed
Koplik, J., Banavar, J.R. & Willemsen, J.F. 1989 Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids 1 (5), 781794.CrossRefGoogle Scholar
Lauga, E. & Stone, H.A. 2003 Effective slip in pressure-driven stokes flow. J. Fluid Mech. 489, 5577.CrossRefGoogle Scholar
Lichter, S., Martini, A., Snurr, R.Q. & Wang, Q. 2007 Liquid slip in nanoscale channels as a rate process. Phys. Rev. Lett. 98 (22), 226001.CrossRefGoogle ScholarPubMed
Lorentz, H.A. 1881 Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase. Ann. Phys. 248 (1), 127136.CrossRefGoogle Scholar
Ma, L., Gaisinskaya-Kipnis, A., Kampf, N. & Klein, J. 2015 Origins of hydration lubrication. Nat. Commun. 6, 6060.CrossRefGoogle ScholarPubMed
Ma, M.D., Shen, L.M., Sheridan, J., Liu, J.Z., Chen, C. & Zheng, Q.S. 2011 Friction of water slipping in carbon nanotubes. Phys. Rev. E 83 (3), 036316.CrossRefGoogle ScholarPubMed
Martini, A., Hsu, H.Y., Patankar, N.A. & Lichter, S. 2008 a Slip at high shear rates. Phys. Rev. Lett. 100 (20), 206001.CrossRefGoogle ScholarPubMed
Martini, A., Roxin, A., Snurr, R.Q., Wang, Q. & Lichter, S. 2008 b Molecular mechanisms of liquid slip. J. Fluid Mech. 600, 257269.CrossRefGoogle Scholar
Mashayak, S.Y. & Aluru, N.R. 2012 Coarse-grained potential model for structural prediction of confined water. J. Chem. Theory Comput. 8 (5), 18281840.CrossRefGoogle ScholarPubMed
Morciano, M., Fasano, M., Nold, A., Braga, C., Yatsyshin, P., Sibley, D.N., Goddard, B.D., Chiavazzo, E., Asinari, P. & Kalliadasis, S. 2017 Nonequilibrium molecular dynamics simulations of nanoconfined fluids at solid-liquid interfaces. J. Chem. Phys. 146 (24), 244507.CrossRefGoogle ScholarPubMed
Nott, P.R. 2011 Boundary conditions at a rigid wall for rough granular gases. J. Fluid Mech. 678, 179202.CrossRefGoogle Scholar
Patashinski, A.Z., Ratner, M.A., Orlik, R. & Mitus, A.C. 2019 Nanofluidic manifestations of structure in liquids: a toy model. J. Phys. Chem. C 123 (27), 1678716795.CrossRefGoogle Scholar
Pozhar, L.A. & Gubbins, K.E. 1993 Transport theory of dense, strongly inhomogeneous fluids. J. Chem. Phys. 99 (11), 89708996.CrossRefGoogle Scholar
Priezjev, N.V. & Troian, S.M. 2006 Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions. J. Fluid Mech. 554 (1), 2546.CrossRefGoogle Scholar
Richardson, S. 1973 On the no-slip boundary condition. J. Fluid Mech. 59 (4), 707719.CrossRefGoogle Scholar
Ruckenstein, E. & Rajora, P. 1983 On the no-slip boundary condition of hydrodynamics. J. Colloid Interface Sci. 96 (2), 488491.CrossRefGoogle Scholar
Secchi, E., Marbach, S., Nigues, A., Stein, D., Siria, A. & Bocquet, L. 2016 Massive radius-dependent flow slippage in carbon nanotubes. Nature 537 (7619), 210213.CrossRefGoogle ScholarPubMed
Shan, B.C., Wang, P., Zhang, Y.H. & Guo, Z.L. 2020 Discrete unified gas kinetic scheme for all knudsen number flows. IV. Strongly inhomogeneous fluids. Phys. Rev. E 101, 043303.CrossRefGoogle ScholarPubMed
Sheng, Q., Gibelli, L., Li, J., K Borg, M.K. & Zhang, Y.H. 2020 Dense gas flow simulations in ultra-tight confinement. Phys. Fluids 32 (9), 544550.CrossRefGoogle Scholar
Sholl, D.S. & Johnson, J.K. 2006 Materials science, making high-flux membranes with carbon nanotubes. Science 312 (5776), 10031004.CrossRefGoogle ScholarPubMed
Shu, J.J., Teo, J.B.M. & Chan, W.K. 2017 Fluid velocity slip and temperature jump at a solid surface. Appl. Mech. Rev. 69 (2), 020801.CrossRefGoogle Scholar
Śliwińska-Bartkowiak, M., Sterczyńska, A., Long, Y. & Gubbins, K.E. 2014 Influence of microroughness on the wetting properties of nano-porous silica matrices. Mol. Phys. 112 (17), 23652371.CrossRefGoogle Scholar
Sochi, T. 2011 Slip at fluid–solid interface. J. Polym. Rev. 51 (4), 309340.CrossRefGoogle Scholar
Steele, W.A. 1973 The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36 (1), 317352.CrossRefGoogle Scholar
Suk, M.E. & Aluru, N.R. 2017 Modeling water flow through carbon nanotube membranes with entrance/exit effects. Nanoscale Microscale Thermophys. Engng 21 (4), 247262.CrossRefGoogle Scholar
Thompson, P.A. & Troian, S.M. 1997 A general boundary condition for liquid flow at solid surfaces. Nature 389 (6649), 360362.CrossRefGoogle Scholar
Urbakh, M., Klafter, J., Gourdon, D. & Israelachvili, J. 2004 The nonlinear nature of friction. Nature 430 (6999), 525528.CrossRefGoogle ScholarPubMed
Vanderlick, T.K., Scriven, L.E. & Davis, H.T. 1989 Molecular theories of confined fluids. J. Chem. Phys. 90 (4), 24222436.CrossRefGoogle Scholar
Voronov, R.S., Papavassiliou, D.V. & Lee, L.L. 2006 Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length. J. Chem. Phys. 124 (20), 204701.CrossRefGoogle ScholarPubMed
Voronov, R.S., Papavassiliou, D.V. & Lee, L.L. 2008 Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind. Engng Chem. Res. 47 (8), 24552477.CrossRefGoogle Scholar
Wang, G.J. & Hadjiconstantinou, N.G. 2019 Universal molecular-kinetic scaling relation for slip of a simple fluid at a solid boundary. Phys. Rev. Fluids 4 (6), 064201.CrossRefGoogle Scholar
Wang, F.C. & Zhao, Y.P. 2011 Slip boundary conditions based on molecular kinetic theory: the critical shear stress and the energy dissipation at the liquid–solid interface. Soft Matt. 7 (18), 86288634.CrossRefGoogle Scholar
Wu, K., Chen, Z., Li, J., Li, X., Xu, J. & Dong, X. 2017 Wettability effect on nanoconfined water flow. Proc. Natl Acad. Sci. USA 114 (13), 33583363.CrossRefGoogle ScholarPubMed
Wu, L., Liu, H.H., Reese, J.M. & Zhang, Y.H. 2016 Non-equilibrium dynamics of dense gas under tight confinement. J. Fluid Mech. 794, 252266.CrossRefGoogle Scholar
Wu, Y.Q., Tahmasebi, P., Lin, C.Y., Zahid, M.A., Dong, C.M., Golab, A.N. & Ren, L.H. 2019 A comprehensive study on geometric, topological and fractal characterizations of pore systems in low-permeability reservoirs based on SEM, MICP, NMR, and X-ray ct experiments. Mar. Petrol. Geol. 103, 1228.CrossRefGoogle Scholar
Yang, F.Q. 2009 Slip boundary condition for viscous flow over solid surfaces. Chem. Engng Commun. 197 (4), 092003.CrossRefGoogle Scholar
Yao, L., Sanjayan, S., Song, J.L., Crick, C.R., Carmalt, C.J. & Parkin, I.P. 2015 Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347 (6226), 11321135.Google Scholar
Yuan, Q.Z. & Zhao, Y.P. 2013 Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. J. Fluid Mech. 716, 171188.CrossRefGoogle Scholar
Zampogna, G.A., Magnaudet, J. & Bottaro, A. 2018 Generalized slip condition over rough surfaces. J. Fluid Mech. 858, 407436.CrossRefGoogle Scholar
Zhang, L.H., Shan, B.C., Zhao, Y.L. & Guo, Z.L. 2019 Review of micro seepage mechanisms in shale gas reservoirs. Intl J. Heat Mass Transfer 139, 144179.CrossRefGoogle Scholar
Zhao, L. & Cheng, J.T. 2017 Analyzing the molecular kinetics of water spreading on hydrophobic surfaces via molecular dynamics simulation. Sci. Rep. 7 (1), 10880.CrossRefGoogle ScholarPubMed
Zhu, Y. & Granick, S. 2001 Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87 (9), 096105.CrossRefGoogle ScholarPubMed