Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T22:19:41.605Z Has data issue: false hasContentIssue false

The modulational instability in deep water under the action of wind and dissipation

Published online by Cambridge University Press:  01 November 2010

C. KHARIF*
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, 49, rue F. Joliot-Curie, BP 146, 13384 Marseille CEDEX 13, France
R. A. KRAENKEL
Affiliation:
Instituto de Fisica Teorica, UNESP, R. Pamplona 145, 01405-900 São Paulo, Brazil
M. A. MANNA
Affiliation:
Laboratoire de Physique Théorique et Astroparticules, CNRS-UMR 5207, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier CEDEX 05, France
R. THOMAS
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, 49, rue F. Joliot-Curie, BP 146, 13384 Marseille CEDEX 13, France
*
Email address for correspondence: [email protected]

Abstract

The modulational instability of gravity wave trains on the surface of water acted upon by wind and under influence of viscosity is considered. The wind regime is that of validity of Miles' theory and the viscosity is small. By using a perturbed nonlinear Schrödinger equation describing the evolution of a narrow-banded wavepacket under the action of wind and dissipation, the modulational instability of the wave group is shown to depend on both the frequency (or wavenumber) of the carrier wave and the strength of the friction velocity (or the wind speed). For fixed values of the water-surface roughness, the marginal curves separating stable states from unstable states are given. It is found in the low-frequency regime that stronger wind velocities are needed to sustain the modulational instability than for high-frequency water waves. In other words, the critical frequency decreases as the carrier wave age increases. Furthermore, it is shown for a given carrier frequency that a larger friction velocity is needed to sustain modulational instability when the roughness length is increased.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alber, I. E. 1978 Proc. R. Soc. Lond. A 363, 525546.Google Scholar
Alber, I. E. & Saffman, P. G. 1978 TWR Defense and Space Systems Group Rep. 31326-6035-RU-00.Google Scholar
Benjamin, T. B. & Feir, J. E. 1967 J. Fluid Mech. 27, 417430.CrossRefGoogle Scholar
Bliven, L. F., Huang, N. E. & Long, S. R. 1986 J. Fluid Mech. 162, 237260.CrossRefGoogle Scholar
Bridges, T. J. & Dias, F. 2007 Phys. Fluids 19, 101063.Google Scholar
Conte, S. D. & Miles, J. W. 1959 J. Soc. Ind. Appl. Maths 7, 361366.CrossRefGoogle Scholar
Crawford, D. R., Saffman, P. G. & Yuen, H. C. 1980 Wave Motion 2, 116.CrossRefGoogle Scholar
Dias, F., Dyachenko, A. I. & Zakharov, V. E. 2008 Phys. Lett. A 371, 12971302.Google Scholar
Janssen, P. A. E. M. 2004 The Interaction of Ocean Waves and Wind. Cambridge University Press.CrossRefGoogle Scholar
Lamb, H. 1993 Hydrodynamics. Dover.Google Scholar
Leblanc, S. 2007 Phys. Fluids 19, 101705.CrossRefGoogle Scholar
Lighthill, M. J. 1965 J. Inst. Maths Appl. 1, 269306.CrossRefGoogle Scholar
Lundgren, T. S. 1989 In SIAM Proceedings (ed. Caflisch, R. E.), ISBN 0-89871-235-1.Google Scholar
Miles, J. W. 1957 J. Fluid Mech. 3, 185204.Google Scholar
Miles, J. W. 1967 Proc. R. Soc. Lond. A 297, 459475.Google Scholar
Miles, J. W. 1996 J. Fluid Mech. 322, 131145.CrossRefGoogle Scholar
Segur, H., Henderson, D., Carter, J., Hammack, J., Li, C. M., Pheiff, D. & Socha, K. 2005 a J. Fluid Mech. 539, 229271.CrossRefGoogle Scholar
Segur, H., Henderson, D. M. & Hammack, J. L. 2005 b In Proceedings of the 14th ‘Aha Huliko’ a Hawaiian Winter Worshop, pp. 43–57.Google Scholar
Skandrani, C., Kharif, C. & Poitevin, J. 1996 Contemp. Maths 200, 157171.CrossRefGoogle Scholar
Stokes, G. G. 1847 Camb. Phil. Soc. Trans. 8, 441455.Google Scholar
Waseda, T. & Tulin, M. P. 1999 J. Fluid Mech. 401, 5584.CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley Interscience.Google Scholar
Wu, G., Liu, Y. & Yue, D. K. P. 2006 J. Fluid Mech. 556, 4554.CrossRefGoogle Scholar
Zakharov, V. E. 1968 J. Appl. Mech. Tech. Phys. 9, 190194.CrossRefGoogle Scholar