Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T22:13:12.418Z Has data issue: false hasContentIssue false

Modulation of turbulence in forced convection by temperature-dependent viscosity

Published online by Cambridge University Press:  20 March 2012

Francesco Zonta
Affiliation:
Centro Interdipartimentale di Fluidodinamica e Idraulica and Dipartimento di Energetica e Macchine, Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
Cristian Marchioli
Affiliation:
Centro Interdipartimentale di Fluidodinamica e Idraulica and Dipartimento di Energetica e Macchine, Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
Alfredo Soldati*
Affiliation:
Centro Interdipartimentale di Fluidodinamica e Idraulica and Dipartimento di Energetica e Macchine, Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
*
Email address for correspondence: [email protected]

Abstract

In this work, we run a numerical experiment to study the behaviour of incompressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulence. We present a systematic analysis of variable-viscosity effects, isolated from gravity, with relevance for aerospace cooling/heating applications. We performed an extensive campaign based on pseudo-spectral direct numerical simulations of turbulent water channel flow in the Reynolds number parameter space. We considered constant temperature boundary conditions and different temperature gradients between the channel walls. Results indicate that average and turbulent fields undergo significant variations. Compared with isothermal flow with constant viscosity, we observe that turbulence is promoted in the cold side of the channel, characterized by viscosity locally higher than the mean: in the range of the examined Reynolds numbers and in absence of gravity, higher values of viscosity determine an increase of turbulent kinetic energy, whereas a decrease of turbulent kinetic energy is determined at the hot wall. Examining in detail the turbulent kinetic energy budget, we find that turbulence modifications are associated with changes in the rate at which energy is produced and dissipated near the walls: specifically, at the hot wall (respectively cold wall) production decreases (respectively increases) while dissipation increases (respectively decreases).

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Also at Department of Fluid Mechanics, CISM, 33100, Udine, Italy.

References

1. Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.Google Scholar
2. Bae, J. H., Yoo, Y. J. & Choi, H. 2005 Direct numerical simulation of supercritical flows with heat transfer. Phys. Fluids 17, 105104.Google Scholar
3. Behzadmehr, A., Saffar-Avval, M. & Galanis, N. 2007 Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Intl J. Heat Fluid Flow 28, 211219.CrossRefGoogle Scholar
4. Bernard, P. S., Thomas, J. M. & Handler, R. A. 1993 Vortex dynamics and the production of Reynolds stress. J. Fluid Mech. 253, 385419.Google Scholar
5. Buyukalaka, O. & Jackson, J. D. 1998 The correction to take account of variable property effects on turbulent forced convection to water in a pipe. Intl J. Heat Mass Transfer 41, 665669.Google Scholar
6. Campolo, M., Andreoli, M. & Soldati, A. 2009 Computing flow, combustion, heat transfer and thrust in a micro-rocket via hierarchical decomposition. Microfluid Nanofluid 7, 5773.Google Scholar
7. Iwamoto, K., Suzuki, Y. & Kasagi, N. 2002 Reynolds number effect on wall turbulence: toward effective feedback control. Intl J. Heat Fluid Flow 23, 678689.CrossRefGoogle Scholar
8. Kang, S., Iaccarino, G. & Ham, F. 2009 DNS of buoyancy-dominated turbulent flows on a bluff body using the immersed boundary method. J. Comput. Phys. 228, 31893208.Google Scholar
9. Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully-developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
10. Lam, K. & Banerjee, S. 1992 On the condition of streak formation in bounded flows. Phys. Fluids A 4, 306320.CrossRefGoogle Scholar
11. Lee, J., Gharagozloo, P. E., Kolade, B., Eaton, J. K. & Goodson, K. E. 2010 Nanofluid convection in microtubes. Trans. ASME J. Heat Transfer 132, 092401.Google Scholar
12. Li, X., Hashimoto, K., Tominaga, Y., Tanahashi, M. & Miyauchi, T. 2008 Numerical study of heat transfer mechanism in turbulent supercritical CO2 channel flow. J. Therm. Sci. Tech. - JPN 3, 112123.Google Scholar
13. Lombardi, P., De Angelis, V. & Banerjee, S. 1996 Direct numerical simulation of near-interface turbulence in coupled gas–liquid flow. Phys. Fluids 8, 16431665.CrossRefGoogle Scholar
14. Luchik, T. S. & Tiederman, W. G. 1987 Time scale and structure of ejections and bursts in turbulent channel flows. J. Fluid Mech. 174, 529552.Google Scholar
15. Maiga, S. E. B., Palm, S. J., Nguyen, C. T., Roy, G. & Galanis, N. 2005 Heat transfer enhancement by using nanofluids in forced convection flows. Intl J. Heat Fluid Flow 468, 283315.Google Scholar
16. Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Taniere, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F. & Portela, L. M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34, 879893.Google Scholar
17. Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
18. Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanism of Turbulence, book 2. MIT Press.Google Scholar
19. Pan, Y. & Banerjee, S. 1995 A numerical study of free-surface turbulence in channel flow. Phys. Fluids 7, 16491664.Google Scholar
20. Perry, A. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical point concepts. Annu. Rev. Fluid Mech. 9, 125148.Google Scholar
21. Pinarbasi, A., Ozalp, C. & Duman, S. 2005 Influence of variable thermal conductivity and viscosity for nonisothermal fluid flow. Phys. Fluids 17, 038109.Google Scholar
22. Popiel, C. O. & Wojtkowiak, J. 1998 Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from to ). Heat Transfer Engng 19 (3), 87101.Google Scholar
23. Sameen, A. & Govindarajan, R. 2007 The effect of wall heating on instability of channel flow. J. Fluid Mech. 577, 417442.Google Scholar
24. Sewall, E. A. & Tafti, D. K. 2008 A time-accurate variable property algorithm for calculating flows with large temperature variations. Comput. Fluids 37, 5163.Google Scholar
25. Shin, S. Y., Cho, Y. I., Gringrich, W. K. & Shyy, W. 1993 Numerical study of laminar heat transfer with temperature dependent fluid viscosity in a 2:1 rectangular duct. Intl J. Heat Mass Transfer 36, 43654373.Google Scholar
26. Shishkina, O. & Thess, A. 2009 Mean temperature profiles in turbulent Rayleigh–Bénard convection of water. J. Fluid Mech. 633, 449460.Google Scholar
27. Sieder, E. N. & Tate, G. E. 1936 Heat transfer and pressure drop of liquids in tubes. Ind. Engng Chem. 28, 14291435.Google Scholar
28. Soldati, A. 2005 Particles turbulence interactions in boundary layers. Z. Angew. Math. Mech. 85, 683699.CrossRefGoogle Scholar
29. Soldati, A. & Banerjee, S. 1998 Turbulence modification by large-scale organized electrohydrodynamic flows. Phys. Fluids 10, 17431756.Google Scholar
30. Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.Google Scholar
31. Verzicco, R. & Sreenivasan, K. R. 2008 A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux. J. Fluid Mech. 595, 203219.CrossRefGoogle Scholar
32. Weast, R. C. 1988 CRC Handbook of Chemistry and Physics. CRC Press.Google Scholar
33. Willmarth, W. W. & Lu, S. S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 6592.Google Scholar
34. Yu, W., France, D. M., Timofeeva, E. V., Singh, D. & Routbort, J. L. 2010 Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow. Appl. Phys. Lett. 96, 213109.Google Scholar
35. Zonta, F. 2010 Turbulence and thermal stratification in inhomogeneous shear flows. PhD thesis, University of Udine, Udine (Italy).Google Scholar
36. Zonta, F., Marchioli, C. & Soldati, A. 2008 Direct numerical simulation of turbulent heat transfer modulation in micro-dispersed channel flow. Acta Mech. 195, 305326.CrossRefGoogle Scholar
37. Zonta, F., Onorato, M. & Soldati, A. 2012 Turbulence and internal waves in stably-stratified channel flows with temperature-dependent fluid properties. J. Fluid Mech. 697, 175203.Google Scholar