Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:04:44.455Z Has data issue: false hasContentIssue false

Modes in flow focusing and instability of coaxial liquid–gas jets

Published online by Cambridge University Press:  15 June 2009

TING SI
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
FANG LI
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
XIE-YUAN YIN
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
XIE-ZHEN YIN*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
*
Email address for correspondence: [email protected]

Abstract

Six flow modes are distinguished in the flow-focusing experiments of a liquid jet forced by a high-speed air stream. The domains of the modes are identified on the parameter space of the liquid flow rate Ql and the gas pressure drop Δpg. The disturbance wavelength λ and breakup length L of the jet are also measured. A theoretical model considering axisymmetric disturbances is proposed, and a basic velocity profile of hyperbolic-tangent function is utilized. The linear temporal and spatio-temporal instability analyses are carried out using the Chebyshev collocation method. The effects of the flow parameters and the velocity profile on the flow instability are discussed. The temporal instability analysis demonstrates that the interfacial shear causes the instability of short waves and retards the instability of long waves. Moreover, the spatio-temporal instability analysis gives the transition boundary between the absolute and convective instability (AI/CI). The most unstable wavelength predicted by the temporal instability analysis and the AI/CI boundary predicted by the spatio-temporal instability analysis are in good agreement with the experimental results.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anna, S. L., Bontoux, N. & Stone, H. A. 2003 Formation of dispersions using ‘flow focusing’ in microchannels. Appl. Phys. Lett. 82, 364–67.CrossRefGoogle Scholar
Anna, S. L. & Mayer, H. C. 2006 Microscale tipstreaming in a microfluidic flow focusing device. Phys. Fluids 18, 121512.CrossRefGoogle Scholar
Barrero, A. & Loscertales, I. G. 2007 Micro- and nanoparticles via capillary flows, Annu. Rev. Fluid Mech. 39, 89106.CrossRefGoogle Scholar
Bers, A. 1973 Theory of absolute and convective instabilities. In International Congress on Waves and Instabilities in Plasma, Innsbruck, Austria.Google Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.CrossRefGoogle Scholar
Chen, X. P., Jia, L. B., Yin, X. Z. & Cheng, J. S. 2005 Spraying modes in coaxial jet electrospray with outer driving liquid. Phys. Fluids 17, 032101.CrossRefGoogle Scholar
Clanet, C. & Lasheras, J. C. 1999 Transition from dripping to jetting. J. Fluid Mech. 383, 307326.CrossRefGoogle Scholar
Dollet, B., Hoeve, W., Raven, J-P., Marmottant, P. & Versluis, M. 2008 Role of the channel geometry on the bubble pinch-off in flow-focusing devices. Phys. Rev. Lett. 100, 034504.CrossRefGoogle ScholarPubMed
Funada, T. & Joseph, D. D. 2002 Viscous potential flow analysis of capillary instability. Intl J. Multiphase Flow 28, 14591478.Google Scholar
Gañán-Calvo, A. M. 1998 Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285288.Google Scholar
Gañán-Calvo, A. M. & Barrero, A. 1999 A novel pneumatic technique to generate steady capillary microjets. J. Aerosol Sci. 30, 117125.CrossRefGoogle Scholar
Gañán-Calvo, A. M. & Riesco-Chueca, P. 2006 Jetting–dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: the minimum flow rate in flow focusing. J. Fluid Mech. 553, 7584.CrossRefGoogle Scholar
Gordillo, J. M. Cheng, Z. Gañán-Calvo, A. M. Márquez, M. & Weitz, D. A. 2004 A new device for the generation of microbubbles. Phys. Fluids 16, 2828–34.Google Scholar
Gordillo, J. M., Pérez-Saborid, M. & Gañán-Calvo, A. M. 2001 Linear stability of co-flowing liquid–gas jets. J. Fluid Mech. 448, 2351.CrossRefGoogle Scholar
Guillot, P., Colin, A. & Ajdari, A. 2008 Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys. Rev. E 78, 016307.Google ScholarPubMed
Guillot, P., Colin, A., Utada, A. S. & Ajdari, A. 2007 Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number. Phys. Rev. Lett. 99, 104502.Google Scholar
Herrada, M. A., Gañán-Calvo, A. M. & Guillot, P. 2008 a Spatiotemporal instability of a confined capillary jet. Phys. Rev. E 78, 046312.Google ScholarPubMed
Herrada, M. A., Gañán-Calvo, A. M., Ojeda-Monge, A., Bluth, B. & Riesco-Chueca, P. 2008 b Liquid flow focused by a gas: jetting, dripping, and recirculation. Phys. Rev. E 78, 036323.Google ScholarPubMed
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.Google Scholar
Huerre, P. & Rossi, M. 1998 Hydrodynamic instabilities in open flows. In Hydrodynamics and Nonlinear Instabilities (ed. Godreche, C. & Manneville, P.), pp. 81294. Cambridge University Press.CrossRefGoogle Scholar
Jaworek, A. & Krupa, A. 1999 Classification of the modes of EHD spraying. J. Aerosol Sci. 30, 873893.CrossRefGoogle Scholar
Juniper, M. P. 2006 The effect of confinement on the stability of two-dimensional shear flows. J. Fluid Mech. 565, 171195.CrossRefGoogle Scholar
Keller, J. B., Rubinow, S. I. & Tu, Y. O. 1973 Spatial instability of a jet. Phys. Fluids 16, 20522055.CrossRefGoogle Scholar
Leib, S. J. & Goldstein, M. E. 1986 a Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29, 952954.CrossRefGoogle Scholar
Leib, S. J. & Goldstein, M. E. 1986 b The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479500.CrossRefGoogle Scholar
Li, F. Yin, X-Y & Yin, X-Z. 2006 Instability analysis of a coaxial jet under a radial electric field in the nonequipotential case. Phys. Fluids 18, 037101.Google Scholar
Lin, S. P. 2003 Breakup of Liquid Sheets and Jets. Cambridge University Press.CrossRefGoogle Scholar
Lin, S. P. & Chen, J. N. 1998 Role played by the interfacial shear in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe. J. Fluid Mech. 376, 3751.Google Scholar
Lin, S. P. & Lian, Z. W. 1990 Instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. J. Fluid Mech. 218, 641658.CrossRefGoogle Scholar
Lin, S. P. & Lian, Z. W. 1993 Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. Phys. Fluids A 5, 771773.CrossRefGoogle Scholar
Lin, S. P. & Reitz, R. D. 1998 Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85105.CrossRefGoogle Scholar
Martín-Banderas, L., Flores-Mosquera, M., Riesco-Chueca, P., Rodríguez-Gil, A., Cebolla, Á., Chávez, S. & Gañán-Calvo, A. M. 2005 Flow focusing: a versatile technology to produce size-controlled and specific morphology microparticles. Small 7, 688692.CrossRefGoogle Scholar
Martín-Banderas, L., Rodríguez-Gil, A., Cebolla, Á., Chávez, S., Berdún-Álvarez, T., Fernendez-Garcia, J. M., Flores-Mosquera, M. & Gañán-Calvo, A. M. 2006 Towards high-throughput production of uniformly encoded microparticles. Adv. Mater. 18, 559564.CrossRefGoogle Scholar
Rayleigh, L. 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.CrossRefGoogle Scholar
Rosell-Llompart, J. & Gañán-Calvo, A. M. 2008 Turbulence in pneumatic flow focusing and flow blurring regimes. Phys. Rev. E 77, 036321.Google ScholarPubMed
Sevilla, A., Gordillo, J. M. & Martínez-Bazán, C. 2002 The effect of the diameter ratio on the absolute and convective instability of free coflowing jets. Phys. Fluids 14, 30283038.CrossRefGoogle Scholar
Sevilla, A., Gordillo, J. M. & Martínez-Bazán, C. 2005 Transition from bubbling to jetting in a coaxial air–water jet. Phys. Fluids 17, 018105.Google Scholar
Taylor, G. I. 1962 Generation of ripples by wind blowing over viscous fluids. In The Scientific Papers of G.I. Taylor (ed. Batchelor, G. K.), vol. 3, pp. 244254. Cambridge University Press.Google Scholar
Yecko, P., Zaleski, S. & Fullana, J. M. 2002 Viscous modes in two-phase mixing layers. Phys. Fluids 14, 41154122.CrossRefGoogle Scholar