Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T08:26:38.679Z Has data issue: false hasContentIssue false

Modelling the influence of wall roughness on heat transfer in thermal convection

Published online by Cambridge University Press:  27 September 2011

Olga Shishkina*
Affiliation:
DLR – Institute for Aerodynamics and Flow Technology, Bunsenstraße 10, 37073 Göttingen, Germany
Claus Wagner
Affiliation:
DLR – Institute for Aerodynamics and Flow Technology, Bunsenstraße 10, 37073 Göttingen, Germany
*
Email address for correspondence: [email protected]

Abstract

The objective of this study is to approximate heat transport in thermal convection enhanced by the roughness of heated/cooled horizontal plates. The roughness is introduced by a set of rectangular heated/cooled obstacles located at the corresponding plates. An analytical model to estimate the Nusselt number deviations caused by the wall roughness is developed. It is based on the two-dimensional Prandtl–Blasius boundary layer equations and therefore is valid for moderate Rayleigh numbers and regular wall roughness, for which the height of the obstacles and the distances between them are significantly larger than the thickness of the thermal boundary layers. To validate this model, the transport of heat and momentum in rectangular convection cells is studied in two-dimensional Navier–Stokes simulations, for different aspect ratios of the obstacles. It is found that the model predicts the heat transport with errors for all investigated cases.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amin, M. R. 1991 The effect of adiabatic wall roughness elements on natural convection heat transfer in vertical enclosures. Intl J. Heat Mass Transfer 34, 26912701.CrossRefGoogle Scholar
2. Amin, M. R. 1993 Natural convection heat transfer and fluid flow in an enclosure convection heat transfer in vertical enclosures. Intl J. Heat Mass Transfer 36, 27072710.CrossRefGoogle Scholar
3. Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503.CrossRefGoogle Scholar
4. Bailon-Cuba, J., Emran, M. S. & Schumacher, J. 2010 Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J. Fluid Mech. 655, 152173.CrossRefGoogle Scholar
5. Blasius, H. 1908 Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 137.Google Scholar
6. Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X. Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
7. Chavanne, X., Chilla, F., Castaing, B., Hebral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.CrossRefGoogle Scholar
8. Cioni, S., Horanyi, S., Krebs, L. & Müller, U. 1997 Temperature fluctuation properties in sodium convection. Phys. Rev. E 56, R3755.CrossRefGoogle Scholar
9. Ciliberto, S. & Laroche, C. 1999 Random roughness of boundary increases the turbulent scaling exponents. Phys. Rev. Lett. 82, 39984001.CrossRefGoogle Scholar
10. Du, Y. B. & Tong, P. 2000 Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 5784.CrossRefGoogle Scholar
11. Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
12. Herwig, H., Gloss, D. & Wenterodt, T. 2008 A new approach to understanding and modelling the influence of wall roughness on friction factors for pipe and channel flows. J. Fluid Mech. 613, 3553.CrossRefGoogle Scholar
13. Hölling, M. & Herwig, H. 2006 Asymptotic analysis of heat transfer in turbulent Rayleigh–Bénard convection. Intl J. Heat Mass Transfer 49, 11291136.CrossRefGoogle Scholar
14. Kaczorowski, M., Shishkin, A., Shishkina, O. & Wagner, C. 2007 Development of a numerical procedure for direct simulations of turbulent convection in a closed rectangular cell. In New Results in Numerical and Experimental Fluid Mechanics VI (ed. Hirschel, E. H. et al. ). Notes on Numerical Fluid Mechanics and Multidisciplinary Design , vol. 96. pp. 381388. Springer.CrossRefGoogle Scholar
15. Kerr, R. M. 1996 Rayleigh number scaling in numerical convection. J. Fluid Mech. 310, 139179.CrossRefGoogle Scholar
16. Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.CrossRefGoogle Scholar
17. Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics: Volume 6 (Course of Theoretical Physics). Pergamon Press.Google Scholar
18. Lohse, D. & Xia, K. Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
19. Niemela, J. J. & Sreenivasan, K. R. 2003 Confined turbulent convection. J. Fluid Mech. 481, 355384.CrossRefGoogle Scholar
20. Nikuradse, J. 1933 Strömungsgesetze in rauhen Rohren. In Forschungsheft. VDI, Düsseldorf.Google Scholar
21. Pohlhausen, K. 1921 Zur Näherungsweise Integration der Differentialgleichung der laminaren Reibungschicht. Z. Angew. Math. Mech. 1, 252268.CrossRefGoogle Scholar
22. Prandtl, L. 1904 Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandllg. Third International Congress of Mathematicians, Heidelberg, pp. 484491. Heidelberg.Google Scholar
23. du Puits, R., Resagk, C., Tilgner, A., Busse, F. H. & Thess, A. 2007 Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 572, 231254.CrossRefGoogle Scholar
24. Qiu, X.-L., Xia, K.-Q. & Tong, P. 2005 Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection. J. Turbul. 30, 113.Google Scholar
25. van Reeuwijk, M., Jonker, H. & Hanjalić, K. 2008a Wind and boundary layers in Rayleigh–Bénard convection. I. Analysis and modelling. Phys. Rev. E 77, 036311.CrossRefGoogle Scholar
26. van Reeuwijk, M., Jonker, H. & Hanjalić, K. 2008b Wind and boundary layers in Rayleigh–Bénard convection. II. Boundary layer character and scaling. Phys. Rev. E 77, 036312.CrossRefGoogle ScholarPubMed
27. Roche, P.-E., Castaing, B., Chabaud, B. & Hebral, B. 2001 Observation of the 1/2 power law in Rayleigh–Bénard convection. Phys. Rev. E 63, 045303.CrossRefGoogle Scholar
28. Roche, P.-E., Castaing, B., Chabaud, B. & Herbal, B. 2004 Heat transfer in turbulent Rayleigh–Bénard convection below ultimate regime. J. Low Temp. Phys. 134, 10111042.CrossRefGoogle Scholar
29. Salizzoni, P., Soulhac, L. & Mejean, P. 2009 Street canyon ventilation and atmospheric turbulence. Atmos. Environ. 43, 50565067.CrossRefGoogle Scholar
30. Shen, Y., Xia, K.-Q. & Tong, P. 1996 Turbulent convection over rough surfaces. Phys. Rev. Lett. 76, 908911.CrossRefGoogle ScholarPubMed
31. Shishkina, O. & Wagner, C. 2005 A fourth order accurate finite volume scheme for numerical simulations of turbulent Rayleigh–Bénard convection in cylindrical containers. C. R. Mecanique 333, 1728.CrossRefGoogle Scholar
32. Shishkina, O. & Wagner, C. 2007 Local heat fluxes in turbulent Rayleigh–Bénard convection. Phys. Fluids 19, 085107.CrossRefGoogle Scholar
33. Shishkina, O. & Thess, A. 2009 Mean temperature profiles in turbulent Rayleigh–Bénard convection of water. J. Fluid Mech. 633, 449460.CrossRefGoogle Scholar
34. Shishkina, O., Shishkin, A. & Wagner, C. 2009 Simulation of turbulent thermal convection in complicated domains. J. Comput. Appl. Maths 226, 336344.CrossRefGoogle Scholar
35. Shishkina, O., Stevens, R., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.CrossRefGoogle Scholar
36. Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high Rayleigh-number convection. Phys. Rev. A 42, 36503653.CrossRefGoogle ScholarPubMed
37. Siggia, E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
38. Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.CrossRefGoogle Scholar
39. Strigano, G., Pascazio, G. & Verzicco, R. 2006 Turbulent thermal convection over grooved plates. J. Fluid Mech. 557, 307336.CrossRefGoogle Scholar
40. Sun, C., Cheung, Y. H. & Xia, K. Q. 2008 Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 605, 79113.CrossRefGoogle Scholar
41. Villermaux, E. 1998 Transfer at rough sheared interfaces. Phys. Rev. Lett. 81, 48594862.CrossRefGoogle Scholar
42. Xia, K.-Q., Lam, S. & Zhou, S.-Q. 2002 Heat-flux measurement in high Prandtl-number turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 88, 064501.CrossRefGoogle ScholarPubMed
43. Yaglom, A. M. & Kader, B. A. 1974 Heat and mas transfer between a rough wall and turbulent fluid flow at high Reynolds and Péclet numbers. J. Fluid Mech. 62, 601623.CrossRefGoogle Scholar