Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T05:28:41.278Z Has data issue: false hasContentIssue false

Modelling single- and tandem-bubble dynamics between two parallel plates for biomedical applications

Published online by Cambridge University Press:  25 January 2013

C.-T. Hsiao*
Affiliation:
Dynaflow, Inc., 10621-J Iron Bridge Rd., Jessup, MD 20794, USA
J.-K. Choi
Affiliation:
Dynaflow, Inc., 10621-J Iron Bridge Rd., Jessup, MD 20794, USA
S. Singh
Affiliation:
Dynaflow, Inc., 10621-J Iron Bridge Rd., Jessup, MD 20794, USA
G. L. Chahine
Affiliation:
Dynaflow, Inc., 10621-J Iron Bridge Rd., Jessup, MD 20794, USA
T. A. Hay
Affiliation:
Applied Research Laboratories, The University of Texas at Austin, Austin, TX 78713, USA
Yu. A. Ilinskii
Affiliation:
Applied Research Laboratories, The University of Texas at Austin, Austin, TX 78713, USA
E. A. Zabolotskaya
Affiliation:
Applied Research Laboratories, The University of Texas at Austin, Austin, TX 78713, USA
M. F. Hamilton
Affiliation:
Applied Research Laboratories, The University of Texas at Austin, Austin, TX 78713, USA
G. Sankin
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, NC 27708, USA
F. Yuan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, NC 27708, USA
P. Zhong
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, NC 27708, USA
*
Email address for correspondence: [email protected]

Abstract

Carefully timed tandem microbubbles have been shown to produce directional and targeted membrane poration of individual cells in microfluidic systems, which could be of use in ultrasound-mediated drug and gene delivery. This study aims at contributing to the understanding of the mechanisms at play in such an interaction. The dynamics of single and tandem microbubbles between two parallel plates is studied numerically and analytically. Comparisons are then made between the numerical results and the available experimental results. Numerically, assuming a potential flow, a three-dimensional boundary element method (BEM) is used to describe complex bubble deformations, jet formation, and bubble splitting. Analytically, compressibility and viscous boundary layer effects along the channel walls, neglected in the BEM model, are considered while shape of the bubble is not considered. Comparisons show that energy losses modify the bubble dynamics when the two approaches use identical initial conditions. The initial conditions in the boundary element method can be adjusted to recover the bubble period and maximum bubble volume when in an infinite medium. Using the same conditions enables the method to recover the full dynamics of single and tandem bubbles, including large deformations and fast re-entering jet formation. This method can be used as a design tool for future tandem-bubble sonoporation experiments.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arndt, R. E. A 1981 Cavitation in fluid machinery and hydraulic structure. Annu. Rev. Fluid Mech. 13, 273328.CrossRefGoogle Scholar
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.Google Scholar
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.Google Scholar
Calvisi, M. L., Iloreta, J. I. & Szeri, A. J 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies nonspherical cavitation collapse. J. Fluid Mech. 616, 6397.Google Scholar
Chahine, G. L. 1982 Experimental and asymptotic study of nonspherical bubble collapse. Appl. Sci. Res. 38, 187197.Google Scholar
Chahine, G. L. 1991 Dynamics of the interaction of non-spherical cavities. In Mathematical Approaches in Hydrodynamics (ed. Miloh, T.). SIAM.Google Scholar
Chahine, G. L. 1993 Cavitation dynamics at microscale level. J. Heart Valve Disease 3, 102116.Google Scholar
Chahine, G. L. 1994 Strong interactions bubble/bubble and bubble/flow. In Bubble Dynamics and Interface Phenomena (ed. Blake, J. R., Boulton-Stone, J. M. & Thomas, N. H.). Kluwer.Google Scholar
Chahine, G. L. 1995 Bubble interactions with vortices. In Vortex Flows (ed. Green, S.), chap. 18, Kluwer.Google Scholar
Chahine, G. L. 1996 Scaling of mechanical heart valves for cavitation inception observation and acoustic detection. J. Heart Valve Disease 5, 207215.Google Scholar
Chahine, G. L. 2005 Numerical studies of the interaction of multiple explosion bubbles (limited distribution). Crit. Technol. Shock Vib. 3 (1), 113.Google Scholar
Chahine, G. L. & Duraiswami, R. 1993 Method for calculating 2-D and 3-D underwater explosion bubble behavior in free water and near structure. NSWC Dahlgren Div. Rep. NSWCDD/TR-93/44.Google Scholar
Chahine, G. L., Duraiswami, R. & Kalumuck, K. M 1997 Boundary element method for calculating 2-D and 3-D underwater explosion bubble loading on nearby structures including fluid-structure interaction effects. NSWC Dahlgren Div. Rep. NSWCDD/TR-93/46.Google Scholar
Chahine, G. L., Duraiswami, R. & Rebut, M. 1992 Analytical and numerical study of large bubble/bubble and bubble/flow interactions, In 19th ONR Symposium of Naval Hydrodynamics, Seoul S. Korea, 679–699.Google Scholar
Chahine, G. L. & Liu, H. L. 1985 A singular perturbation theory of the growth of a bubble cluster in a superheated liquid. J. Fluid Mech 156, 257279.Google Scholar
Chahine, G. L. & Morine, A. K. 1980 The influence of polymer additives on the collapse of a bubble between two solid walls. ASME Cavitation and Polyphase Flow Forum, New Orleans, Louisiana.Google Scholar
Chahine, G. L., Perdue, T. O. & Tucker, C. B. 1989 Interaction between underwater explosion bubble and a solid submerged body. Dynaflow Inc. Tech. Rep. 89001-1.Google Scholar
Chen, H., Brayman, A. A., Bailey, M. R. & Matula, T. J. 2010 Blood vessel rupture by cavitation. Urol Res. 39, 321326.CrossRefGoogle Scholar
Chen, H., Brayman, A. A., Bailey, M. R. & Matula, T. J. 2011 Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessel. Ultraso. Med. Biol. 37, 21392148.Google Scholar
Cui, J., Hamilton, M. F., Wilson, P. S. & Zabolotskaya, E. A. 2006 Bubble pulsations between parallel plates. J. Acoust. Soc. Am. 119 (4), 20672072.Google Scholar
Darrozes, J. S. & Chahine, G. L. 1983 Les Recherches sur le Phenomne de Cavitation Effectues L’Ecole Nationale Suprieure de Techniques Avances. Sciences et Techniques de L’Armement, Memorial de l’Artillerie Francaise, 11–183.Google Scholar
Gonzalez-Avila, S. L., Klaseboer, E., Khoo, B. C. & Ohl, C.-D. 2011 Cavitation bubble dynamics in a liquid gap of variable height. J. Fluid Mech. 682, 241260.Google Scholar
Gracewski, S. M., Miao, H. & Dalecki, D. 2005 Ultrasonic excitation of a bubble near a rigid or deformable sphere: implications for ultrasonically induced hemolysis. J. Acoust. Soc. Am. 117 (3), 18.Google Scholar
Haines, J. R., Riemer, B. W., Felde, D. K., Hunn, J. D., Pawel, S. J. & Tsai, C. C. 2005 Summary of cavitation erosion investigations for the SNS mercury target. J. Nucl. Mater. 343 (1–3), 5869.CrossRefGoogle Scholar
Haubold, A. D., Ely, J. L. & Chahine, G. L. 1994 Effect of cavitation on pyrolytic carbon in vitro. J. Heart Valve Dis. 3, 318323.Google Scholar
Hay, T. A., Ilinskii, Yu. A., Zabolotskaya, E. A. & Hamilton, M. F. 2012 Model for bubble pulsation in liquid between parallel viscoelastic layers. J. Acoust. Soc. Am. 132 (1), 124137.Google Scholar
Hsiao, C.-T. & Chahine, G. L. 2010 3DynaFS ©A Three-dimensional Free Surface and Bubble Dynamics Code. Dynaflow, Inc., User Manual 7.085.Google Scholar
Hsiao, C.-T., Lu, X. & Chahine, G. L. 2010 Three-dimensional modelling of the dynamics of therapeutic ultrasound contrast agent. Ultraso. Med. Biol. 36 (12), 20652079.CrossRefGoogle Scholar
Ilinskii, Y. A., Zabolotskaya, E. A., Hay, T. A. & Hamilton, M. F. 2012 Models of cylindrical bubble pulsations. J. Acoust. Soc. Am. 133 (3), 13461357.Google Scholar
Iloreta, J. I., Fung, N. & Szeri, A. J 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 1. Consequences of interference between incident and reflected waves. J. Fluid Mech. 616, 4361.Google Scholar
Knapp, R. T., Daily, J. W. & Hammitt, F. G. 1970 Cavitation. McGraw-Hill.Google Scholar
Krieger, J. & Chahine, G. L. 2005 Acoustic signals of underwater explosions Near surfaces. J. Acoust. Soc. Am. 118 (5), 29612974.Google Scholar
Kroninger, D., Kohler, K., Kurz, T. & Lauterborn, W. 2010 Particle tracking velocimetry of the flow field around a collapsing cavitation bubble. Exp. Fluids 48 (3), 395408.Google Scholar
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391399.Google Scholar
Leighton, T. 2012 The inertial terms in equations of motion for bubbles in tubular vessels or between plates. J. Acoust. Soc. Am. 130, 33333338.Google Scholar
Lim, K. Y., Quinto-Su, P. A., Klaseboer, E. & Khoo, B. C. 2010 Nonspherical laser-induced cavitation bubbles. Phys. Rev. E 81, 016308.Google Scholar
Miao, H., Gracewski, S. M. & Dalecki, D. 2008 Ultrasonic excitation of a bubble inside a deformable tube: implications for ultrasonically induced hemorrhage. J. Acoust. Soc. Am. 124 (4), 23742384.Google Scholar
Miller, D. L 1987 A review of ultrasonic bioeffects of microsonation, gas-body activation, and related cavitation-like phenomena. Ultraso. Med. Biol. 13, 443470.Google Scholar
Mitragotri, S. 2005 Innovation healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nature Rev. Drug Dis. 4 (3), 255260.Google Scholar
Overvelde, M., Garbin, V., Dollet, B., Cojoc, D., Ferrari, E., de Jong, N., Fabrizio, E. D., Lohse, D. & Versluis, M. 2007 3D optical micromanipulation of ultrasound contrast agents: bubble-wall and bubble–bubble interactions. In Proceedings of the 19th International Congress on Acoustics, Paper NLA-02-005-IP.Google Scholar
Pishchalnikov, Y. A., Sapozhnikov, O. A., Bailey, M. R., Williams, J. C., Cleveland, R. O., Colonius, T., Crum, L. A., Evan, A. P. & McAteer, J. A. 2003 Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J. Endourol. 17, 435446.Google Scholar
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47 (2), 283290.Google Scholar
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.Google Scholar
Sankin, G. N., Yuan, F. & Zhong, P 2010 Pulsating tandem microbubble for localized and directional single cell membrane poration. Phys. Rev. Lett. 105 (7), 078101.Google Scholar
Shima, A. & Sato, Y 1980 The behaviour of a bubble between narrow parallel plates. Z. Angew. Math. Phys. 31, 691704.Google Scholar
Shima, A & Tomita, Y 1981 The behavior of a spherical bubble near a solid wall in a compressible liquid. Ing.-Arch. 51, 243255.Google Scholar
Tomita, Y., Robinson, P. B., Tong, R. P. & Blake, J. R. 2002 Growth and collapse of cavitation bubbles near a curved rigid boundary. J. Fluid Mech. 466, 259283.CrossRefGoogle Scholar
Tomita, Y., Sato, K. & Shima, A 1994 Interaction of two laser-produced cavitation bubbles near boundaries. In Bubble Dynamics and Interface Phenomena (ed. Blake, J. R., Boulton-Stone, J. M. & Thomas, N. H.), Kluwer.Google Scholar
Wilson, S. K. 2010 Dynamics of a two-dimensional vapour bubble confined between superheated or subcooled parallel plates. Phys. Rev. E 81, 046314.Google Scholar
Yuan, F., Sankin, G. N. & Zhong, P. 2011 Dynamics of tandem bubble interaction in a microfluidic channel. J. Acoust. Soc. Am. 130, 3339.Google Scholar
Zhang, J., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.Google Scholar
Zhong, P., Cocks, F. H., Cioanta, I. & Preminger, G. M. 1997 Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy. J. Urol.: Invest. Urol. 158, 23232328.Google Scholar