Hostname: page-component-5cf477f64f-rdph2 Total loading time: 0 Render date: 2025-03-31T23:37:24.659Z Has data issue: false hasContentIssue false

Modelling pinching dynamics in thin films of binary mixtures

Published online by Cambridge University Press:  14 March 2025

A. Choudhury*
Affiliation:
PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France. CNRS, SIMM, ESPCI Paris, PSL Research University, Sorbonne Université, 75005 Paris, France
L. Duchemin
Affiliation:
PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France.
F. Lequeux
Affiliation:
CNRS, SIMM, ESPCI Paris, PSL Research University, Sorbonne Université, 75005 Paris, France
L. Talini
Affiliation:
CNRS, Surface du Verre et Interfaces, Saint-Gobain, 93300 Aubervilliers, France
*
Corresponding authors: Anjishnu Choudhury, [email protected]

Abstract

In binary mixtures, the lifetimes of surface bubbles can be five orders of magnitude longer than those in pure liquids because of slightly different compositions of the bulk and the surfaces, leading to a thickness-dependent surface tension of thin films. Taking advantage of the resulting simple surface rheology, we derive the equations describing the thickness, flow velocity and surface tension of a single liquid film, using thermodynamics of ideal solutions and thin film mechanics. Numerical resolution shows that, after a first step of tension equilibration, the Laplace-pressure-driven flow is associated with a flow at the interface driven by an induced Marangoni stress. The resulting parabolic flow with mobile interfaces in the film further leads to its pinching, eventually causing its rupture. Our model paves the way for a better understanding of the rupture dynamics of liquid films of binary mixtures.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aradian, A., Raphael, E. & De Gennes, P.-G. 2001 “Marginal pinching” in soap films. Europhys. Lett. 55 (6), 834840.CrossRefGoogle Scholar
Borkar, S. & Ramachandran, A. 2021 Substrate colonization by an emulsion drop prior to spreading. Nat. Commun. 12 (1), 5734.CrossRefGoogle Scholar
Breward, C. & Howell, P. 2002 The drainage of a foam lamella. J. Fluid Mech. 458, 379406.CrossRefGoogle Scholar
Butler, J. 1932 The thermodynamics of the surfaces of solutions. Proc. R. Soc. Lond A 135 (827), 348375.Google Scholar
Chan, D., Klaseboer, E. & Manica, R. 2011 Film drainage and coalescence between deformable drops and bubbles. Soft Matter 7 (6), 22352264.CrossRefGoogle Scholar
Chandran Suja, V., Kar, A., Cates, W., Remmert, S., Savage, P. & Fuller, G. 2018 Evaporation-induced foam stabilization in lubricating oils. Proc. Natl Acad. Sci. USA 115 (31), 79197924.CrossRefGoogle ScholarPubMed
Choudhury, A., Dey, M., Dixit, H.N. & Feng, J.J. 2021 Tear-film breakup: the role of membrane-associated mucin polymers. Phys. Rev. E 103 (1), 013108.CrossRefGoogle ScholarPubMed
Choudhury, A., Paidi, V., Kalpathy, S. & Dixit, H. 2020 Enhanced stability of free viscous films due to surface viscosity. Phys. Fluids 32 (8), 082108.CrossRefGoogle Scholar
Duchemin, L. & Eggers, J. 2014 The explicit-implicit-null method: removing the numerical instability of pdes. J. Comput. Phys. 263, 3752.CrossRefGoogle Scholar
Eggers, J. & Dupont, T. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.CrossRefGoogle Scholar
Frostad, J., Walter, J. & Leal, L. 2013 A scaling relation for the capillary-pressure driven drainage of thin films. Phys. Fluids 25 (5), 052108.CrossRefGoogle Scholar
Karpitschka, S. & Riegler, H. 2012 Noncoalescence of sessile drops from different but miscible liquids: hydrodynamic format analysis of the twin drop contour as a self-stabilizing traveling wave. Phys. Rev. Lett. 109 (6), 066103.CrossRefGoogle Scholar
Klaseboer, E., Chevaillier, J., Gourdon, C. & Masbernat, O. 2000 Film drainage between colliding drops at constant approach velocity: experiments and modeling. J. Colloid Interface Sci. 229 (1), 274285.CrossRefGoogle ScholarPubMed
Leal, L. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Vol. 7. Cambridge University Press.CrossRefGoogle Scholar
Lhuissier, H. & Villermaux, E. 2012 Bursting bubble aerosols. J. Fluid Mech. 696, 544.CrossRefGoogle Scholar
Liu, B., Manica, R., Liu, Q., Xu, Z., Klaseboer, E. & Yang, Q. 2023 Nanoscale transport during liquid film thinning inhibits bubble coalescing behavior in electrolyte solutions. Phys. Rev. Lett. 131 (10), 104003.CrossRefGoogle ScholarPubMed
Lombardi, L., Roig-Sanchez, S., Bapat, A. & Frostad, J. 2023 Nonaqueous foam stabilization mechanisms in the presence of volatile solvents. J. Colloid Interface Sci. 648, 4655.CrossRefGoogle ScholarPubMed
Pasquet, M., Boulogne, F., Sant-Anna, J., Restagno, F. & Rio, E. 2022 The impact of physical-chemistry on film thinning in surface bubbles. Soft Matter 18 (24), 45364542.CrossRefGoogle ScholarPubMed
Petkova, B., Tcholakova, S., Chenkova, M., Golemanov, K., Denkov, N., Thorley, D. & Stoyanov, S. 2020 Foamability of aqueous solutions: role of surfactant type and concentration. Adv. Colloid Interface Sci. 276, 102084.CrossRefGoogle ScholarPubMed
Petkova, B., Tcholakova, S. & Denkov, N. 2021 Foamability of surfactant solutions: interplay between adsorption and hydrodynamic conditions. Colloids Surf. A: Physico-Chem. Engng Aspects 626, 127009.CrossRefGoogle Scholar
Pugh, R. 1996 Foaming, foam films, antifoaming and defoaming. Adv. Colloid Interface Sci. 64, 67142.CrossRefGoogle Scholar
Ross, S. & Nishioka, G. 1975 Foaminess of binary and ternary solutions. J. Phys. Chem 79 (15), 15611565.CrossRefGoogle Scholar
Santos, M. & Reis, J. 2021 Examination of the butler equation for the surface tension of liquid mixtures. ACS Omega 6 (33), 2157121578.CrossRefGoogle ScholarPubMed
Shah, M., Kleijn, C., Kreutzer, M. & Van Steijn, V. 2021 Influence of initial film radius and film thickness on the rupture of foam films. Phys. Rev. Fluids 6 (1), 013603.CrossRefGoogle Scholar
Tempel, M., Lucassen, J. & Lucassen-Reynders, E. 1965 Application of surface thermodynamics to Gibbs Elasticity. J. Phys. Chem 69 (6), 17981804.CrossRefGoogle Scholar
Thiele, U., Archer, A. & Pismen, L. 2016 Gradient dynamics models for liquid films with soluble surfactant. Phys. Rev. Fluids 1 (8), 083903.CrossRefGoogle Scholar
Tran, H.-P., Arangalage, M., Jørgensen, L., Passade-Boupat, N., Lequeux, F. & Talini, L. 2020 Understanding frothing of liquid mixtures: a surfactantlike effect at the origin of enhanced liquid film lifetimes. Phys. Rev. Lett. 125 (17), 178002.CrossRefGoogle ScholarPubMed
Tran, H.-P., Passade-Boupat, N., Lequeux, F. & Talini, L. 2022 Mechanisms ruling the lifetimes of films of liquid mixtures. J. Fluid Mech. 944, A55.CrossRefGoogle Scholar
Trégouët, C. & Cantat, I. 2021 Instability of the one-dimensional thickness profile at the edge of a horizontal foam film and its plateau border. Phys. Rev. Fluids 6 (11), 114005.CrossRefGoogle Scholar
Yiantsios, S. & Davis, R. 1990 On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface. J. Fluid Mech. 217, 547573.CrossRefGoogle Scholar
Zawala, J., Miguet, J., Rastogi, P., Atasi, O., Borkowski, M., Scheid, B. & Fuller, G. 2023 Coalescence of surface bubbles: the crucial role of motion-induced dynamic adsorption layer. Adv. Colloid Interface Sci. 317, 102916.CrossRefGoogle ScholarPubMed
Supplementary material: File

Choudhury et al. supplementary material movie

Stages of drainage and marginal pinching of a thin film of Octane/Toluene mixture.
Download Choudhury et al. supplementary material movie(File)
File 380.6 KB