Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T08:40:55.406Z Has data issue: false hasContentIssue false

Modelling film flows down a fibre

Published online by Cambridge University Press:  30 April 2008

C. RUYER-QUIL
Affiliation:
Laboratoire FAST – UMR CNRS 7608, Campus universitaire, 91405 Orsay, France
P. TREVELEYAN
Affiliation:
Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
F. GIORGIUTTI-DAUPHINÉ
Affiliation:
Laboratoire FAST – UMR CNRS 7608, Campus universitaire, 91405 Orsay, France
C. DUPRAT
Affiliation:
Laboratoire FAST – UMR CNRS 7608, Campus universitaire, 91405 Orsay, France
S. KALLIADASIS
Affiliation:
Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

Consider the gravity-driven flow of a thin liquid film down a vertical fibre. A model of two coupled evolution equations for the local film thickness h and the local flow rate q is formulated within the framework of the long-wave and boundary-layer approximations. The model accounts for inertia and streamwise viscous diffusion. Evolution equations obtained by previous authors are recovered in the appropriate limit. Comparisons to experimental results show good agreement in both linear and nonlinear regimes. Viscous diffusion effects are found to have a stabilizing dispersive effect on the linear waves. Time-dependent computations of the spatial evolution of the film reveal a strong influence of streamwise viscous diffusion on the dynamics of the flow and the wave selection process.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseenko, S. V., Nakoryakov, V. Y. & Pokusaev, B. G. 1985 Wave formation on a vertical falling liquid film. AIChE J. 31, 14461460.CrossRefGoogle Scholar
Brevdo, L., Dias, F., Bridges, T. J. & Laure, P. 1999 Convective unstable wave packets in a film flow down an inclined plane. J. Fluid Mech. 396, 3771.CrossRefGoogle Scholar
Chang, H.-C., Demekhin, E. A. & Kalaidin, E. 1996 Simulation of noise-driven wave dynamics on a falling film. AIChE J. 42, 15531568.CrossRefGoogle Scholar
Chang, H.-C., Demekhin, E. A. & Saprikin, S. 2002 Noise-driven wave transitions on a vertically falling film. J. Fluid Mech. 462, 255283.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. 2006 On viscous beads flowing down a vertical fibre. J. Fluid Mech. 553, 85105.CrossRefGoogle Scholar
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B. & Wang, X.-J. 1997 Auto97: Continuation and bifurcation software for ordinary differential equations. Tech. Rep. Department of Computer Science, Concordia University, Montreal, Canada (available by FTP from ftp.cs.concordia.ca in directory pub/doedel/auto).Google Scholar
Duprat, C., Ruyer-Quil, C., Kalliadasis, S. & Giorgiutti-Dauphiné, F. 2007 Absolute and convective instabilities of a film flowing down a vertical fiber. Phys. Rev. Lett. 98, 244502.CrossRefGoogle Scholar
Frenkel, A. L. 1992 Nonlinear theory of strongly undulating thin films flowing down vertical cylinders. Europhys. Lett. 18, 583588.CrossRefGoogle Scholar
Gaster, M. 1962 A note on the relation between temporally-increasing and spatially increasing disturbances in hydrodynamic stability. J. Fluid Mech. 14, 222224.CrossRefGoogle Scholar
Huerre, P. & Rossi, M. 1998 Hydrodynamic instabilities in open flows. In Hydrodynamic and Nonlinear Instabilities (ed. Godréche, C. & Manneville, P.), pp. 81294. Cambridge University Press.CrossRefGoogle Scholar
Kalliadasis, S. & Chang, H.-C. 1994 Drop formation during coating of vertical fibres. J. Fluid Mech. 261, 135168.CrossRefGoogle Scholar
Kliakhandler, I. L., Davis, S. H. & Bankoff, S. G. 2001 Viscous beads on vertical fibre. J. Fluid Mech. 429, 381390.CrossRefGoogle Scholar
Ooshida, T. 1999 Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number. Phys. Fluids 11, 32473269.Google Scholar
Quéré, D. 1990 Thin films flowing on vertical fibers. Europhys. Lett. 13, 721726.CrossRefGoogle Scholar
Quéré, D. 1999 Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31, 347384.CrossRefGoogle Scholar
Rayleigh, Lord 1878 On the stability of liquid jets. Proc. Lond. Math. Soc. 10, 4.CrossRefGoogle Scholar
Roberts, A. J. & Li, Z. 2006 An accurate and comprehensive model of thin fluid flows with inertia on curved substrates. J. Fluid Mech. 553, 3373.CrossRefGoogle Scholar
Roy, R. V., Roberts, A. J. & Simpson, A. J. 2002 A lubrication model of coating flows over a curved substrate in space. J. Fluid Mech. 454, 235261.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357369.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14, 170183.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech. 562, 183222.CrossRefGoogle Scholar
Shkadov, V. Ya. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Izv. Akad. Nauk SSSR, Mekh. Zhidk Gaza 1, 43–51 (English translation in Fluid Dyn. 2, 29–34, 1970, Faraday Press, NY).CrossRefGoogle Scholar
Shkadov, V. Ya. 1977 Solitary waves in a layer of viscous liquid. Izv. Ak. Nauk SSSR, Mekh. Zhid Gaza 1, 6366.Google Scholar
Sisoev, G. M., Craster, R. V., Matar, O. K. & Gerasimov, S. V. 2006 Film flow down a fibre at moderate flow rates. Chem. Eng. Sci. 61, 72797298.CrossRefGoogle Scholar
Smith, M. K. 1990 The mechanism for the long-wave instability in thin liquid films. J. Fluid Mech. 217, 469485.CrossRefGoogle Scholar
Trifonov, Yu. Ya 1992 Steady-state travelling waves on the surface of a viscous liquid film falling down vertucal wires and tubes. AIChE J. 38, 821834.CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.Google Scholar