Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T06:07:55.414Z Has data issue: false hasContentIssue false

Modal energy flow analysis of a highly modulated wake behind a wall-mounted pyramid

Published online by Cambridge University Press:  09 June 2016

Zahra Hosseini
Affiliation:
Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
Robert J. Martinuzzi*
Affiliation:
Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
Bernd R. Noack
Affiliation:
LIMSI-CNRS, UPR 3251, Rue John von Neumann, Campus Universitaire d’Orsay, Bât. 508, 91405 Orsay CEDEX, France Institut für Strömungsmechanik, Technische Universität Brauschweig, Hermann-Blenk-Str. 37, 38108 Braunschweig, Germany
*
Email address for correspondence: [email protected]

Abstract

We experimentally investigate the highly modulated turbulent wake behind a wall-mounted square-base pyramid protruding through the boundary layer. We present the first modal energy flow analysis of a time-resolved three-dimensional velocity field from experimental particle image velocimetry data. The underlying low-order representation is optimized for resolving the base-flow variation as well as the first and second harmonics associated with vortex shedding – generalizing the triple decomposition of Reynolds & Hussain (J. Fluid Mech., vol. 54, 1972, pp. 263–288). This analysis comprises not only a detailed modal balance of turbulent kinetic energy as pioneered by Rempfer & Fasel (J. Fluid Mech., vol. 275, 1994, pp. 257–283) for proper orthogonal decomposition (POD) models, but also the companion energy balance of the mean flow. The experimental results vividly demonstrate how constitutive elements of mean-field theory (Stuart, J. Fluid Mech., vol. 4, 1958, pp. 1–21) near laminar Hopf bifurcations remain strongly pronounced in a turbulent wake characterized by highly modulated, quasi-periodic shedding. The study emphasizes, for instance, the stabilizing role of mean-field manifolds, as explored in the pioneering POD model of Aubry et al. (J. Fluid Mech., vol. 192, 1988, pp. 115–173). The presented low-order representation of the flow and modal energy flow analyses may provide important insights and reference data for computational turbulence modelling, e.g. unsteady Reynolds-averaged Navier–Stokes simulations.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abuomar, M. M. & Martinuzzi, R. J. 2008 Vortical structures around a surface-mounted pyramid in a thin boundary layer. J. Wind Engng Ind. Aerodyn. 96, 769778.Google Scholar
Adaramola, M. S., Akinlade, O. G., Sumner, D., Bergstrom, D. J. & Schenstead, A. J. 2006 Turbulent wake of a finite circular cylinder of small aspect ratio. J. Fluids Struct. 22, 919928.Google Scholar
Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.Google Scholar
Baars, W. J. & Tinney, C. E. 2014 Proper orthogonal decomposition-based spectral higher-order stochastic estimation. Phys. Fluids 26, 055112,1–21.Google Scholar
Borée, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35, 188192.Google Scholar
Bourgeois, J. A., Noack, B. R. & Martinuzzi, R. J. 2013 Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake. J. Fluid Mech. 736, 316350.Google Scholar
Bourgeois, J. A., Sattari, P. & Martinuzzi, R. J. 2011 Alternating half-loop shedding in the turbulent wake of a finite-surface-mounted square cylinder with a thin boundary layer. Phys. Fluids 23, 095101.CrossRefGoogle Scholar
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.CrossRefGoogle Scholar
Castro, I. P. & Rogers, P. 2002 Vortex shedding from tapered plates. Exp. Fluids 33, 6674.Google Scholar
Castro, I. P. & Watson, L. 2004 Vortex shedding from tapered, triangular plates: taper and aspect ratio effects. Exp. Fluids 37, 159167.CrossRefGoogle Scholar
Clark, H., Naghib-Lahouti, A. & Lavoie, P. 2014 General perspectives on model construction and evaluation for stochastic estimation, with application to a blunt trailing edge wake. Exp. Fluids 55, 1756.Google Scholar
Couplet, M., Sagaut, P. & Basdevant, C. 2003 Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow. J. Fluid Mech. 491, 275284.Google Scholar
Durgesh, V. & Naughton, J. W. 2010 Multi-time-delay LSE–POD complementary approach applied to unsteady high-Reynolds-number near wake flow. Exp. Fluids 49, 571583.Google Scholar
Hervé, A., Sipp, D., Schmid, P. J. & Samuelides, M. 2012 A physics-based approach to flow control using system identification. J. Fluid Mech. 702, 2658.Google Scholar
Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge Monographs on Mechanics. Cambridge University Press.Google Scholar
Hosseini, Z., Bourgeois, J. A. & Martinuzzi, R. J. 2013 Large-scale structures in dipole and quadrupole wakes of a wall-mounted finite rectangular cylinder. Exp. Fluids 54, 1595.Google Scholar
Hosseini, Z., Martinuzzi, R. J. & Noack, B. R. 2015 Sensor based estimation of the velocity in the wake of a low-aspect-ratio pyramid. Exp. Fluids 56, 13.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Krajnović, S. 2011 Flow around a tall finite cylinder explored by large eddy simulation. J. Fluid Mech. 676, 294317.Google Scholar
Lasagna, D., Orazi, M. & Iuso, G. 2013 Multi-time delay, multi-point linear stochastic estimation of a cavity shear layer velocity from wall-pressure measurements. Phys. Fluids 25 (1), 017101.Google Scholar
Liu, J. T. C. 1989 Coherent structures in transitional and turbulent free shear flows. Annu. Rev. Fluid Mech. 21, 285315.Google Scholar
Martinuzzi, R. J. 2008 Dual vortex structure shedding from low aspect ratio, surface-mounted pyramids. J. Turbul. 28, 116.Google Scholar
McClean, J. F. & Sumner, D. 2012 Aerodynamic forces and vortex shedding for surface-mounted finite square prisms and the effects of aspect ratio and incidence angle. In Proceedings of the ASME 2012 Fluids Engineering Summer Meeting.Google Scholar
Mills, R., Sheridan, J. & Hourigan, K. 2003 Particle image velocimetry and visualizaton of natural and forced flow around rectangular cylinders. J. Fluid Mech. 478, 299323.Google Scholar
Noack, B. R.2006 Niederdimensionale Galerkin-Modelle für laminare and transitionelle freie Scherströmungen. Habilitation thesis, Technische Universität Berlin.Google Scholar
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models of the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.Google Scholar
Noack, B. R., Morzyński, M. & Tadmor, G. 2011 Reduced-order Modelling for Flow Control, CISM Courses and Lectures, vol. 528. Springer.Google Scholar
Noack, B. R., Papas, P. & Monkewitz, P. A. 2005 The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 553, 339365.Google Scholar
Noack, B. R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P. & Tadmor, G. 2008 A finitie-time thermodynamics of unsteady fluid flows. J. Non-Equilib. Thermodyn. 33 (2), 103148.Google Scholar
Okamoto, S. & Sunabashiri, Y. 1992 Vortex shedding from a circular cylinder of finite length placed on a ground plane. Trans. ASME: J. Fluids Engng 114, 512522.Google Scholar
Rempfer, D. & Fasel, F. H. 1994a Evolution of three-dimensional coherent structures in a flat-plate boundary-layer. J. Fluid Mech. 260, 351375.Google Scholar
Rempfer, D. & Fasel, F. H. 1994b Dynamics of three-dimensional coherent structures in a flat-plate boundary-layer. J. Fluid Mech. 275, 257283.CrossRefGoogle Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.Google Scholar
Schumm, M., Berger, E. & Monkewitz, P. A. 1994 Self-excited oscillations in the wake of two-dimensional bluff bodies and their control. J. Fluid Mech. 271, 1753.Google Scholar
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2003 A coupled Landau model describing the Strouhal–Reynolds number profile of the three-dimensional wake of a circular cylinder. Phys. Fluids 15, L68L71.Google Scholar
Sicot, C., Perrin, R., Tran, T. T. & Borée, J. 2012 Wall pressure and conditional flow structures downstream of a reattaching flow region. Intl J. Heat Fluid Flow 35, 119129.Google Scholar
Sreenivasan, K. R., Strykowski, P. J. & Olinger, D. J. 1987 Hopf bifurcation, Landau equation, and vortex shedding behind circular cylinders. In Forum on Unsteady Flow Separation (ed. Ghia, K. N.), vol. 52, pp. 113. ASME Fluids Engineering Division.Google Scholar
Stuart, J. T. 1958 On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4, 121.Google Scholar
Stuart, J. T. 1971 Nonlinear stability theory. Annu. Rev. Fluid Mech. 3, 347370.Google Scholar
Tinney, C. E., Glauser, M. N. & Ukeiley, L. S. 2008a Low-dimensional characteristics of a transonic jet. Part 1. Proper orthogonal decomposition. J. Fluid Mech. 612, 107141.Google Scholar
Tinney, C. E., Ukeiley, L. S. & Glauser, M. N. 2008b Low-dimensional characteristics of a transonic jet. Part 2. Estimate and far-field prediction. J. Fluid Mech. 615, 5392.CrossRefGoogle Scholar
Wang, H. F. & Zhou, Z. 2009 The finite-length square cylinder near wake. J. Fluid Mech. 638, 453490.Google Scholar
Wang, H. F., Zhou, Z., Chan, C. K. & Lam, K. S. 2006 Effect of initial conditions on interaction between a boundary layer and a wall-mounted finite-length-cylinder wake. Phys. Fluids 18, 112.Google Scholar
Westerweel, J. 2000 Theoretical analysis of the measurement precision in particle image velocimetry. Exp. Fluids 29, S3S12.CrossRefGoogle Scholar
Zielinska, B. J. A., Goujon-Durand, S., Dušek, J. & Wesfreid, J. E. 1997 Strongly nonlinear effect in unstable wakes. Phys. Rev. Lett. 79, 38933896.Google Scholar