Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T16:28:28.307Z Has data issue: false hasContentIssue false

Micro-splashing by drop impacts

Published online by Cambridge University Press:  18 July 2012

S. T. Thoroddsen*
Affiliation:
Division of Physical Sciences and Engineering and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
K. Takehara
Affiliation:
Department of Civil and Environmental Engineering, Kinki University, Higashi-Osaka 577-8502, Japan
T. G. Etoh
Affiliation:
Department of Civil and Environmental Engineering, Kinki University, Higashi-Osaka 577-8502, Japan
*
Email address for correspondence: [email protected]

Abstract

We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s−1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cresswell, R. W. & Morton, B. R. 1995 Drop-formed vortex rings – the generation of vorticity. Phys. Fluids 7, 13631370.CrossRefGoogle Scholar
2. Driscoll, M. M. & Nagel, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.CrossRefGoogle ScholarPubMed
3. Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2010 Thin film formation during splashing of viscous liquids. Phys. Rev. E 83, 036302.CrossRefGoogle Scholar
4. Eggers, J. 2001 Air entrainment through free-surface cusps. Phys. Rev. Lett. 86, 42904293.CrossRefGoogle ScholarPubMed
5. Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.CrossRefGoogle Scholar
6. Etoh, T. G., Poggemann, D., Kreider, G., Mutoh, H., Theuwissen, A. J. P., Ruckelshausen, A., Kondo, Y., Maruno, H., Takubo, K., Soya, H., Takehara, K., Okinaka, T. & Takano, Y. 2003 An image sensor which captures 100 consecutive frames at 1000000 frames/s. IEEE Trans. Electron Devices 50, 144151.CrossRefGoogle Scholar
7. Haller, K. K., Ventikos, Y., Poulikakos, D. & Monkewitz, P. 2002 Computational study of high-speed liquid droplet impact. J. Appl. Phys. 92, 28212828.CrossRefGoogle Scholar
8. Haller, K. K., Ventikos, Y. & Poulikakos, D. 2003 Wave structure in the contact line region during high speed droplet impact on a surface: solution of the Riemann problem for the stiffened gas equation of state. J. Appl. Phys. 93, 30903097.CrossRefGoogle Scholar
9. Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.CrossRefGoogle ScholarPubMed
10. Krechetnikov, R. & Homsy, G. M. 2009 Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331, 555559.CrossRefGoogle ScholarPubMed
11. Lesser, M. & Field, J. E. 1983 The impact of compressible liquids. Annu. Rev. Fluid Mech. 15, 97122.CrossRefGoogle Scholar
12. Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.CrossRefGoogle Scholar
13. Mandre, S. & Brenner, M. P. 2012 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148172.CrossRefGoogle Scholar
14. Marmanis, H. & Thoroddsen, S. T. 1996 Scaling of the fingering pattern of an impacting drop. Phys. Fluids 8, 13441346.CrossRefGoogle Scholar
15. Mundo, C., Sommerfeld, M. & Tropea, C. 1995 Droplet–wall collisions: experimental studies of the deformation and breakup process. Intl J. Multiphase Flow 21, 151173.CrossRefGoogle Scholar
16. Oguz, H. N. & Prosperetti, A. 1989 Surface-tension effects in the contact of liquid surfaces. J. Fluid Mech. 203, 149171.CrossRefGoogle Scholar
17. Rein, M. & Delplanque, J.-P. 2008 The role of air entrainment on the outcome of drop impact on a solid surface. Acta Mech. 201, 105118.CrossRefGoogle Scholar
18. Rioboo, R., Tropea, C. & Marengo, M. 2001 Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11, 155165.Google Scholar
19. Roisman, I. V., Horvat, K. & Tropea, C. 2006 Spray impact: rim transverse instability initiating fingering and splash and description of a secondary spray. Phys. Fluids 18, 102104.CrossRefGoogle Scholar
20. De Ruiter, J., Pepper, R. E. & Stone, H. A. 2010 Thickness of the rim of an expanding lamella near the splash threshold. Phys. Fluids 22, 022104.CrossRefGoogle Scholar
21. Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.CrossRefGoogle Scholar
22. Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, K. N. & Hatsuki, Y. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.CrossRefGoogle Scholar
23. Thoroddsen, S. T. & Sakakibara, J. 1998 Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10, 13591374.CrossRefGoogle Scholar
24. Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2010 Bubble entrapment through topological change. Phys. Fluids 22, 051701.CrossRefGoogle Scholar
25. Thoroddsen, S. T., Thoraval, M.-J., Takehara, K. & Etoh, T. G. 2011 Droplet splashing by a sling-shot mechanism. Phys. Rev. Lett. 106, 034501.CrossRefGoogle Scholar
26. Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
27. van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed colour interferometry. Phys. Rev. E 85, 026315.CrossRefGoogle ScholarPubMed
28. Vander Wal, R. L., Berger, B. M. & Mozes, S. D. 2006 The splash/non-splash boundary upon a dry surface and thin fluid film. Exp. Fluids 40, 2332.CrossRefGoogle Scholar
29. Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nature Phys. 5, 697702.CrossRefGoogle Scholar
30. Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.CrossRefGoogle Scholar
31. Xu, L. 2010 Instability development of a viscous liquid drop impacting a smooth substrate. Phys. Rev. E 82, 025303.CrossRefGoogle ScholarPubMed
32. Xu, L., Barcos, L. & Nagel, S. R. 2007 Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76, 066311.CrossRefGoogle ScholarPubMed
33. Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.CrossRefGoogle ScholarPubMed
34. Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.CrossRefGoogle Scholar
35. Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
36. Zhang, L. V., Brunet, P., Eggers, J. & Deegan, R. D. 2010 Wavelength selection in the crown splash. Phys. Fluids 22, 122105.CrossRefGoogle Scholar

Thoroddsen et al. supplementary movie

Impact of a water drop viewed through a glass plate. Frame rate: 500,000 fps. Horizontal extent: 3.24 mm. Vertical extent: 3.51 mm. Impact velocity 3.8 m/s. Drop diameter 5.4 mm. We = 1070, Re = 20500.

Download Thoroddsen et al. supplementary movie(Video)
Video 1.5 MB

Thoroddsen et al. supplementary movie

Impact of a water drop viewed through a glass plate. Frame rate: 500,000 fps. Horizontal extent: 3.24 mm. Vertical extent: 3.51 mm. Impact velocity 3.8 m/s. Drop diameter 5.4 mm. We = 1070, Re = 20500.

Download Thoroddsen et al. supplementary movie(Video)
Video 234.3 KB

Thoroddsen et al. supplementary movie

Impact of a water drop viewed through a glass plate. Frame rate: 1,000,000 fps. Horizontal extent: 2.19 mm. Vertical extent: 1.96 mm. Impact velocity 4.8 m/s. Drop diameter 5.5 mm. We = 1740, Re = 26400.

Download Thoroddsen et al. supplementary movie(Video)
Video 1.4 MB

Thoroddsen et al. supplementary movie

Impact of a water drop viewed through a glass plate. Frame rate: 1,000,000 fps. Horizontal extent: 2.19 mm. Vertical extent: 1.96 mm. Impact velocity 4.8 m/s. Drop diameter 5.5 mm. We = 1740, Re = 26400.

Download Thoroddsen et al. supplementary movie(Video)
Video 977.6 KB

Thoroddsen et al. supplementary movie

Impact of a water drop viewed through a glass plate. Frame rate: 250,000 fps. Horizontal extent: 3.68 mm. Vertical extent: 4.50 mm. Impact velocity 5.4 m/s. Drop diameter 6.2 mm. We = 2480, Re = 33500.

Download Thoroddsen et al. supplementary movie(Video)
Video 940 KB

Thoroddsen et al. supplementary movie

Impact of a water drop viewed through a glass plate. Frame rate: 250,000 fps. Horizontal extent: 3.68 mm. Vertical extent: 4.50 mm. Impact velocity 5.4 m/s. Drop diameter 6.2 mm. We = 2480, Re = 33500.

Download Thoroddsen et al. supplementary movie(Video)
Video 142.2 KB

Thoroddsen et al. supplementary movie

Impact of a water drop viewed through a glass plate. Frame rate: 250,000 fps. Horizontal extent: 5.12 mm. Vertical extent: 5.62 mm. Impact velocity 5.4 m/s. Drop diameter 6.2 mm. We = 2480, Re = 33500

Download Thoroddsen et al. supplementary movie(Video)
Video 1.4 MB

Thoroddsen et al. supplementary movie

Impact of a water drop viewed through a glass plate. Frame rate: 250,000 fps. Horizontal extent: 5.12 mm. Vertical extent: 5.62 mm. Impact velocity 5.4 m/s. Drop diameter 6.2 mm. We = 2480, Re = 33500

Download Thoroddsen et al. supplementary movie(Video)
Video 234.7 KB

Thoroddsen et al. supplementary movie

Impact of a water drop viewed through a glass plate. Frame rate: 125,000 fps. Horizontal extent: 5.1 mm. Vertical extent: 5.4 mm. Impact velocity 3.8 m/s. Drop diameter 6.2 mm. We = 1100, Re = 22300

Download Thoroddsen et al. supplementary movie(Video)
Video 2.8 MB

Thoroddsen et al. supplementary movie

Impact of a water drop viewed through a glass plate. Frame rate: 125,000 fps. Horizontal extent: 5.1 mm. Vertical extent: 5.4 mm. Impact velocity 3.8 m/s. Drop diameter 6.2 mm. We = 1100, Re = 22300

Download Thoroddsen et al. supplementary movie(Video)
Video 212 KB