Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:53:57.784Z Has data issue: false hasContentIssue false

Methane oxidation near a cold wall

Published online by Cambridge University Press:  20 April 2006

R. Keiper
Affiliation:
Fachgebiet Technische Strömungslehre, 6100 Darmstadt, Petersenstrasse 30, W. Germany
J. H. Spurk
Affiliation:
Fachgebiet Technische Strömungslehre, 6100 Darmstadt, Petersenstrasse 30, W. Germany

Abstract

The thermal non-equilibrium boundary layer at the end wall of a shock tube in methane combustion initiated by a reflected shock, is investigated theoretically and experimentally. Time-dependent boundary conditions are caused by the shock–boundary-layer interaction and the combustion process outside the boundary layer, and are taken into account. Space- and time-resolved density measurements using a focused laser beam are in good agreement with results from numerical computation and show existence of similarity solutions for short and long times. Differences, so far unexplained, occur between measured and predicted heat fluxes to the wall.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpher, R. A. & White, D. R. 1959 Optical refractivity of high-temperature gases I. Phys. Fluids 2, 153.Google Scholar
Amdur, I. & Mason, E. A. 1958 Properties of gases at very high temperatures. Phys. Fluids 1, 361.Google Scholar
Baganoff, D. 1965 Experiments on the wall-pressure history in shock-reflexion processes. J. Fluid Mech. 23, 209.Google Scholar
Blottner, F. G. 1970 Finite difference methods of solution of the boundary-layer equations. A.I.A.A. J. 8, 193.Google Scholar
Borchers, H., Hausen, H., Hellwege, K.-H. & Schäfer, Kl. 1962 Numerical Data and Functional Relationships in Physics, Chemistry, Astronomy, Geophysics, and Technology, Volume II. Part 8. Optical Constants, pp. 6871. Springer: Landolt-Börnstein. (In German.)
Bowman, G. T. 1974 Non-equilibrium radical concentrations in shock-initiated methane oxidation. 15th Symp. (Int.) on Combustion, p. 869. The Combustion Institute.
Clarke, J. F. 1962 Temperature-time histories at the interface between gas and a solid. J. Fluid Mech. 13, 47.Google Scholar
Dyner, H. B. 1966 Density variation due to reflected shock — boundary-layer interaction. Phys. Fluids 9, 879.Google Scholar
Fay, J. A. & Kemp, N. H. 1965 Theory of heat transfer to a shock-tube end-wall from an ionized monatomic gas. J. Fluid Mech. 21, 659.Google Scholar
Hirschfelder, J. O. 1957 Heat transfer in chemically reacting mixtures. J. Chem. Phys. 26, 274.Google Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. 1967 Molecular Theory of Gases and Liquids. pp. 516, 1110. Wiley.
Keiper, R. 1980 Theoretische und experimentelle Untersuchung der Temperaturgrenzschicht mit chemischen Reaktionen unter dem Einfluß der Transportprozesse. Diss. Darmstadt D 17, p. 109.
Khouw, B., Morgan, J. E. & Schiff, H. I. 1969 Experimental measurements of the diffusion coefficients of H atoms in H2 and H2–He and H2–Ar mixtures. J. Chem. Phys. 50, 66.Google Scholar
Mark, M. 1953 The interaction of a reflected shock wave with the boundary layer in a shock tube. N.A.C.A. Tech. Memo. 1418.Google Scholar
Morgan, J. E. & Schiff, H. I. 1964 Diffusion coefficients of O and N atoms in inert gases. Canad. J. Chem. 42, 2300.Google Scholar
Nelson, H. F. 1976 Nitric oxide formation in combustion. A.I.A.A. J. 14, 1177.Google Scholar
Rudinger, G. 1961 Effect of boundary-layer growth in a shock tube on shock reflection from a closed end. Phys. Fluids 4, 1463.Google Scholar
Presley, L. L. & Hanson, R. K. 1969 Numerical solutions of reflected shock-wave flow fields with non-equilibrium chemical reactions. A.I.A.A. J. 7, 2267.Google Scholar
Spruk, J. H. 1970 Experimental and numerical non-equilibrium flow studies. A.I.A.A. J. 8, 1039.Google Scholar
Spurk, J. H. 1980 Bemerkungen zur thermischen Nichtgleichgewichtsgrenzschicht. Ing. Archiv 49, 269.Google Scholar
Strehlow, R. A. & Cohen, A. 1959 Limitations of the reflected shock technique for studying fast chemical reactions and its application to the observation of relaxation in nitrogen and oxygen. J. Chem. Phys. 30, 257.Google Scholar
Sturtevant, B. & Slachmuylders, E. 1964 End-wall heat-transfer effects on the trajectory of a reflected shock wave. Phys. Fluids 7, 1201.Google Scholar
Vrugt, P. J. 1976 Shock tube study of the coefficient of thermal conductivity of helium, neon, argon and krypton. Ph.D. thesis, Eindhoven University of Technology, p. 100.
Warnatz, J. 1980 The structure of laminar alkane-, alkene-, and acetylene flames. 18th Symp. (Int.) on Combustion, Waterloo, Canada.
White, D. R. 1961 Optical refractivity of high temperature gases III. Phys. Fluids 4, 40.Google Scholar