Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T02:42:39.570Z Has data issue: false hasContentIssue false

Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

Published online by Cambridge University Press:  23 July 2015

Shahram Karami*
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
Evatt R. Hawkes
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, Australia
Mohsen Talei
Affiliation:
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, Australia
Jacqueline H. Chen
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA
*
Email address for correspondence: [email protected]

Abstract

A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow and relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Su et al. (Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse directions, as opposed to possible mechanisms involving a dominance of either one direction of transport. It features upstream transport balanced by entrainment into richer conditions, while on the rich side, upstream turbulent transport and entrainment from leaner conditions balance the streamwise convection.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Gayed, R. G., Bradley, D. & Lawes, M. 1987 Turbulent burning velocities: a general correlation in terms of straining rates. Proc. R. Soc. Lond. A 414 (1847), 389413.Google Scholar
Akbarzadeh, M. & Birouk, M. 2014 Liftoff of a co-flowing non-premixed turbulent methane flame: effect of the fuel nozzle orifice geometry. Flow Turbul. Combust. 92 (4), 903929.Google Scholar
Akiba, H., Ma, K., Chen, J. H. & Hawkes, E. R. 2007 Visualizing multivariate volume data from turbulent combustion simulations. Comput. Sci. Engng 9 (2), 7683.Google Scholar
Arndt, C. M., Schießl, R., Gounder, J. D., Meier, W. & Aigner, M. 2013 Flame stabilization and auto-ignition of pulsed methane jets in a hot coflow: influence of temperature. Proc. Combust. Inst. 34 (1), 14831490.Google Scholar
Baillot, F. & Demare, D. 2002 Physical mechanisms of a lifted nonpremixed flame stabilized in an acoustic field. Combust. Sci. Technol. 174 (8), 7398.Google Scholar
Boulanger, J., Vervisch, L., Reveillon, J. & Ghosal, S. 2003 Effects of heat release in laminar diffusion flames lifted on round jets. Combust. Flame 134 (4), 355368.Google Scholar
Boxx, I., Heeger, C., Gordon, R., Böhm, B., Aigner, M., Dreizler, A. & Meier, W. 2009a Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, $\text{C}_{3}\text{H}_{8}$ –argon jet diffusion flame at 1.5 kHz repetition rate. Proc. Combust. Inst. 32 (1), 905912.Google Scholar
Boxx, I., Heeger, C., Gordon, R., Böhm, B., Dreizler, A. & Meier, W. 2009b On the importance of temporal context in interpretation of flame discontinuities. Combust. Flame 156 (1), 269271.Google Scholar
Boxx, I. G., Meier, W. & Carter, C. D.2014 Investigation of turbulent lifted planar jet flames using high-speed laser imaging diagnostics. AIAA SciTech, 52nd Aerospace Sciences Meeting pp. AIAA 2014–0316.Google Scholar
Bray, K., Domingo, P. & Vervisch, L. 2005 Role of the progress variable in models for partially premixed turbulent combustion. Combust. Flame 141 (4), 431437.Google Scholar
Broadwell, J. E., Dahm, W. J. A. & Mungal, M. G. 1985 Blowout of turbulent diffusion flames. Symp. (Intl) Combust. 20 (1), 303310.Google Scholar
Brown, C. D., Watson, K. A. & Lyons, K. M. 1999 Studies on lifted jet flames in coflow: the stabilization mechanism in the near- and far-fields. Flow Turbul. Combust. 62 (3), 249273.Google Scholar
Buckmaster, J. 1996 Edge-flames and their stability. Combust. Sci. Technol. 115 (1–3), 4168.Google Scholar
Buckmaster, J. 2002 Edge-flames. Prog. Energy Combust. Sci. 28 (5), 435475.Google Scholar
Buckmaster, J. & Weber, R. 1996 Edge-flame-holding. Symp. (Intl) Combust. 26 (1), 11431149.Google Scholar
Burgess, C. P. & Lawn, C. J. 1999 The premixture model of turbulent burning to describe lifted jet flames. Combust. Flame 119 (1), 95108.Google Scholar
Cessou, A., Maurey, C. & Stepowski, D. 2004 Parametric and statistical investigation of the behavior of a lifted flame over a turbulent free-jet structure. Combust. Flame 137 (4), 458477.Google Scholar
Chakraborty, N. & Cant, S. 2004 Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137 (1), 129147.Google Scholar
Chakraborty, N., Hesse, H. & Mastorakos, E. 2010 Numerical investigation of edge flame propagation behavior in an igniting turbulent planar jet. Combust. Sci. Technol. 182 (11–12), 17471781.Google Scholar
Chakraborty, N. & Mastorakos, E. 2006 Numerical investigation of edge flame propagation characteristics in turbulent mixing layers. Phys. Fluids 18 (10), 105103.Google Scholar
Chakraborty, N. & Mastorakos, E. 2008 Direct numerical simulations of localised forced ignition in turbulent mixing layers: the effects of mixture fraction and its gradient. Flow Turbul. Combust. 80, 155186.Google Scholar
Chatakonda, O., Hawkes, E. R., Aspden, A. J., Kerstein, A. R., Kolla, H. & Chen, J. H. 2013 On the fractal characteristics of low Damköhler number flames. Combust. Flame 160 (11), 24222433.Google Scholar
Chen, J. H., Choudhary, A., De Supinski, B., Devries, M., Hawkes, E. R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S. & Yoo, C. S. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2 (1), 015001.Google Scholar
Chen, J. H., Hawkes, E. R., Sankaran, R., Mason, S. D. & Im, H. G. 2006 Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I. Fundamental analysis and diagnostics. Combust. Flame 145 (1), 128144.Google Scholar
Chung, S. H. 2007 Stabilization, propagation and instability of tribrachial triple flames. Proc. Combust. Inst. 31 (1), 877892.CrossRefGoogle Scholar
Dahoe, A. E. & De Goey, L. P. H. 2003 On the determination of the laminar burning velocity from closed vessel gas explosions. J. Loss Prev. Process. Ind. 16 (6), 457478.Google Scholar
Demare, D. & Baillot, F. 2001 The role of secondary instabilities in the stabilization of a nonpremixed lifted jet flame. Phys. Fluids 13 (9), 26622670.Google Scholar
Domingo, P., Vervisch, L. & Bray, K. 2002 Partially premixed flamelets in LES of nonpremixed turbulent combustion. Combust. Theor. Model. 6 (4), 529551.Google Scholar
Domingo, P., Vervisch, L. & Réveillon, J. 2005 DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combust. Flame 140 (3), 172195.Google Scholar
Echekki, T. & Chen, J. H. 1996 Unsteady strain rate and curvature effects in turbulent premixed methane–air flames. Combust. Flame 106 (1), 184202.Google Scholar
Echekki, T. & Chen, J. H. 1998 Structure and propagation of methanol air triple flames. Combust. Flame 114 (12), 231245.Google Scholar
Franzelli, B., Riber, E., Gicquel, L. Y. M. & Poinsot, T. 2012 Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust. Flame 159 (2), 621637.Google Scholar
Garrido-Lòpez, D. & Sarkar, S. 2005 Effects of imperfect premixing coupled with hydrodynamic instability on flame propagation. Proc. Combust. Inst. 30 (1), 621628.Google Scholar
Ghosal, S. & Vervisch, L. 2000 Theoretical and numerical study of a symmetrical triple flame using the parabolic flame path approximation. J. Fluid Mech. 415, 227260.Google Scholar
Gibson, C. H., Ashurst, W. T. & Kerstein, A. R. 1988 Mixing of strongly diffusive passive scalars like temperature by turbulence. J. Fluid Mech. 194, 261293.Google Scholar
Gordon, R. L., Boxx, I., Carter, C., Dreizler, A. & Meier, W. 2012 Lifted diffusion flame stabilisation: conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base. Flow Turbul. Combust. 88 (4), 503527.Google Scholar
Gordon, R. L., Masri, A. R., Pope, S. B. & Goldin, G. M. 2007 A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theor. Model. 11 (3), 351376.Google Scholar
Grout, R. W., Gruber, A., Kolla, H., Bremer, P. T., Bennett, J. C., Gyulassy, A. & Chen, J. H. 2012 A direct numerical simulation study of turbulence and flame structure in transverse jets analysed in jet-trajectory based coordinates. J. Fluid Mech. 706, 351383.Google Scholar
Gutmark, E. & Wygnanski, I. 1976 The planar turbulent jet. J. Fluid Mech. 73 (03), 465495.Google Scholar
Han, D. & Mungal, M. G. 2000 Observations on the transition from flame liftoff to flame blowout. Proc. Combust. Inst. 28 (1), 537543.Google Scholar
Hasselbrink, E. F. Jr & Mungal, M. G. 1998 Characteristics of the velocity field near the instantaneous base of lifted non-premixed turbulent jet flames. Symp. (Intl) Combust. 27 (1), 867873.Google Scholar
Hawkes, E. R., Chatakonda, O., Kolla, H., Kerstein, A. R. & Chen, J. H. 2012 A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159 (8), 26902703.Google Scholar
Hawkes, E. R. & Chen, J. H. 2004 Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames. Combust. Flame 138 (3), 242258.Google Scholar
Hawkes, E. R. & Chen, J. H. 2006 Comparison of direct numerical simulation of lean premixed methane–air flames with strained laminar flame calculations. Combust. Flame 144 (1), 112125.Google Scholar
Hawkes, E. R., Sankaran, R. & Chen, J. H.2007a Reignition dynamics in massively parallel direct numerical simulations of $\text{CO}/\text{H}_{2}$ jet flames. In 16th Australasian Fluid Mechanics Conference. School of Engineering, The University of Queensland, pp. 1271–1274.Google Scholar
Hawkes, E. R., Sankaran, R. & Chen, J. H.2007b A study of extinction and reignition dynamics in syngas jet flames using terascale direct numerical simulations: sensitivity to the choice of reacting scalar. In Proceedings of the Australian Combustion Symposium, pp. 46–49.Google Scholar
Hawkes, E. R., Sankaran, R., Chen, J. H., Kaiser, S. A. & Frank, J. H. 2009 An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames. Proc. Combust. Inst. 32 (1), 14551463.Google Scholar
Hawkes, E. R., Sankaran, R., Sutherland, J. C. & Chen, J. H. 2007c Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal $\text{CO}/\text{H}_{2}$ kinetics. Proc. Combust. Inst. 31 (1), 16331640.Google Scholar
Heeger, C., Böhm, B., Ahmed, S. F., Gordon, R., Boxx, I., Meier, W., Dreizler, A. & Mastorakos, E. 2009 Statistics of relative and absolute velocities of turbulent non-premixed edge flames following spark ignition. Proc. Combust. Inst. 32 (2), 29572964.Google Scholar
Hesse, H., Chakraborty, N. & Mastorakos, E. 2009 The effects of the Lewis number of the fuel on the displacement speed of edge flames in igniting turbulent mixing layers. Proc. Combust. Inst. 32 (1), 13991407.Google Scholar
Hult, J., Meier, U., Meier, W., Harvey, A. & Kaminski, C. F. 2005 Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements. Proc. Combust. Inst. 30 (1), 701709.Google Scholar
Im, H. G. & Chen, J. H. 1999 Structure and propagation of triple flames in partially premixed hydrogen–air mixtures. Combust. Flame 119 (4), 436454.Google Scholar
Im, H. G. & Chen, J. H. 2001 Effects of flow strain on triple flame propagation. Combust. Flame 126 (1), 13841392.Google Scholar
Joedicke, A., Peters, N. & Mansour, M. 2005 The stabilization mechanism and structure of turbulent hydrocarbon lifted flames. Proc. Combust. Inst. 30 (1), 901909.Google Scholar
Kalghatgi, G. T. 1984 Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41 (1–2), 1729.Google Scholar
Kaplan, C. R., Oran, E. S. & Baek, S. W. 1994 Stabilization mechanism of lifted jet diffusion flames. Symp. (Intl) Combust. 25 (1), 11831189.Google Scholar
Karami, S., Talei, M., Hawkes, E. R. & Chatakonda, O.2013 Direct numerical simulation of a partially premixed turbulent, lifted flame. In Proceedings of the 9th Asia-Pacific Conference on Combustion, Gyeongju, South Korea.Google Scholar
Kelman, J. B., Eltobaji, A. J. & Masri, A. R. 1998 Laser imaging in the stabilisation region of turbulent lifted flames. Combust. Sci. Technol. 135 (1–6), 117134.Google Scholar
Kennedy, C. A. & Carpenter, M. H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Maths 14 (4), 397433.Google Scholar
Knudsen, E. & Pitsch, H. 2012 Capabilities and limitations of multi-regime flamelet combustion models. Combust. Flame 159 (1), 242264.Google Scholar
Kolla, H., Grout, R. W., Gruber, A. & Chen, J. H. 2012 Mechanisms of flame stabilization and blowout in a reacting turbulent hydrogen jet in cross-flow. Combust. Flame 159 (8), 27552766.Google Scholar
Krisman, A., Hawkes, E. R., Talei, M., Bhagatwala, A. & Chen, J. H. 2015 Polybrachial structures in dimethyl ether edge-flames at negative temperature coefficient conditions. Proc. Combust. Inst. 35 (1), 9991006.Google Scholar
Landau, L. D. 1944 On the theory of slow combustion. Acta Physicochim. USSR 19 (1), 7785.Google Scholar
Lawn, C. J. 2009 Lifted flames on fuel jets in co-flowing air. Prog. Energy Combust. Sci. 35 (1), 130.Google Scholar
Luo, K. H. 1999 Combustion effects on turbulence in a partially premixed supersonic diffusion flame. Combust. Flame 119 (4), 417435.Google Scholar
Luo, Z., Yoo, C. S., Richardson, E. S., Chen, J. H., Law, C. K. & Lu, T. 2012 Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame 159 (1), 265274.Google Scholar
Lyons, K. M., Watson, K. A., Carter, C. D. & Donbar, J. M. 2007 Upstream islands of flame in lifted-jet partially premixed combustion. Combust. Sci. Technol. 179 (5), 10291037.Google Scholar
Mansour, M. S. 2003 Stability characteristics of lifted turbulent partially premixed jet flames. Combust. Flame 133 (3), 263274.Google Scholar
Mansour, M. S. 2004 The flow field structure at the base of lifted turbulent partially premixed jet flames. Exp. Therm. Fluid Sci. 28 (7), 771779.Google Scholar
Maurey, C., Cessou, A., Lecordier, B. & Stepowski, D. 2000 Statistical flow dynamic properties conditioned on the oscillating stabilization location of turbulent lifted flame. Proc. Combust. Inst. 28 (1), 545551.Google Scholar
Mehravaran, K. & Jaberi, F. A. 2004 Direct numerical simulation of transitional and turbulent buoyant planar jet flames. Phys. Fluids 16 (12), 44434461.Google Scholar
Miake-Lye, R. C. & Hammer, J. A. 1989 Lifted turbulent jet flames: a stability criterion based on the jet large-scale structure. Symp. (Intl) Combust. 22 (1), 817824.Google Scholar
Mizobuchi, Y., Shinio, J., Ogawa, S. & Takeno, T. 2005 A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 30 (1), 611619.Google Scholar
Mizobuchi, Y., Tachibana, S., Shinio, J., Ogawa, S. & Takeno, T. 2002 A numerical analysis of the structure of a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 29 (2), 20092015.Google Scholar
Müller, C. M., Breitbach, H. & Peters, N. 1994 Partially premixed turbulent flame propagation in jet flames. Symp. (Intl) Combust. 25 (1), 10991106.Google Scholar
Muniz, L. & Mungal, M. G. 1997 Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111 (1), 1631.Google Scholar
Namazian, M., Schefer, R. W. & Kelly, J. 1988 Scalar dissipation measurements in the developing region of a jet. Combust. Flame 74 (2), 147160.Google Scholar
Nishiki, S., Hasegawa, T., Borghi, R. & Himeno, R. 2006 Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases. Combust. Theor. Model. 10 (1), 3955.Google Scholar
Noda, S., Mori, H., Hongo, Y. & Nishioka, M. 2005 Nonpremixed flamelet statistics at flame base of lifted turbulent jet nonpremixed flames. JSME Intl J. 48 (1), 7582.Google Scholar
Pantano, C. 2004 Direct simulation of non-premixed flame extinction in a methane–air jet with reduced chemistry. J. Fluid Mech. 514, 231270.Google Scholar
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.Google Scholar
Peters, N. & Kee, R. J. 1987 The computation of stretched laminar methane–air diffusion flames using a reduced four-step mechanism. Combust. Flame 68 (1), 1729.Google Scholar
Peters, N. & Williams, F. A. 1983 Liftoff characteristics of turbulent jet diffusion flames. AIAA J. 21, 423429.Google Scholar
Peters, N. & Williams, F. A. 1987 The asymptotic structure of stoichiometric methane–air flames. Combust. Flame 68 (2), 185207.Google Scholar
Pitsch, H. & Fedotov, S. 2000 Stochastic modeling of scalar dissipation rate fluctuations in non-premixed turbulent combustion. Center Turbul. Res. Annu. Res. Briefs 91, 91103.Google Scholar
Pitts, W. M. 1989 Importance of isothermal mixing processes to the understanding of lift-off and blowout of turbulent jet diffusion flames. Combust. Flame 76 (2), 197212.Google Scholar
Pope, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26 (5), 445469.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Punati, N., Sutherland, J. C., Kerstein, A. R., Hawkes, E. R. & Chen, J. H. 2011 An evaluation of the one-dimensional turbulence model: comparison with direct numerical simulations of $\text{CO}/\text{H}_{2}$ jets with extinction and reignition. Proc. Combust. Inst. 33 (1), 15151522.Google Scholar
Ruetsch, G. R., Vervisch, L. & Liñán, A. 1995 Effects of heat release on triple flames. Phys. Fluids 7 (6), 14471454.Google Scholar
Sankaran, R., Hawkes, E. R., Chen, J. H., Lu, T. & Law, C. K. 2006 Direct numerical simulations of turbulent lean premixed combustion. J. Phys.: Conf. Ser. 46 (1), 3842.Google Scholar
Schefer, R. W. 1997a Flame sheet imaging using CH chemiluminescence. Combust. Sci. Technol. 126 (1–6), 255279.Google Scholar
Schefer, R. W. 1997b Three-dimensional structure of lifted, turbulent-jet flames. Combust. Sci. Technol. 125 (1–6), 371394.Google Scholar
Schefer, R. W. & Goix, P. J. 1998 Mechanism of flame stabilization in turbulent, lifted-jet flames. Combust. Flame 112 (4), 559574.Google Scholar
Schefer, R. W., Namazian, M., Filtopoulos, E. E. J. & Kelly, J. 1994a Temporal evolution of turbulence/chemistry interactions in lifted, turbulent-jet flames. Symp. (Intl) Combust. 25 (1), 12231231.Google Scholar
Schefer, R. W., Namazian, M. & Kelly, J. 1994b Stabilization of lifted turbulent-jet flames. Combust. Flame 99 (1), 7586.Google Scholar
Sen, B. A., Hawkes, E. R. & Menon, S. 2010 Large eddy simulation of extinction and reignition with artificial neural networks based chemical kinetics. Combust. Flame 157 (3), 566578.Google Scholar
Seshadri, K. & Peters, N. 1988 Asymptotic structure and extinction of methane–air diffusion flames. Combust. Flame 73 (1), 2344.Google Scholar
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C. Jr, Lissianski, V. & Qin, Z. 1999 GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/.Google Scholar
Stanley, S. A., Sarkar, S. & Mellado, J. P. 2002 A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech. 450, 377407.Google Scholar
Stårner, S. H., Bilger, R. W., Frank, J. H., Marran, D. F. & Long, M. B. 1996 Mixture fraction imaging in a lifted methane jet flame. Combust. Flame 107 (3), 307313.Google Scholar
Su, L. K., Sun, O. S. & Mungal, M. G. 2006 Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames. Combust. Flame 144 (3), 494512.Google Scholar
Tacke, M. M., Geyer, D., Hassel, E. P. & Janicka, J. 1998 A detailed investigation of the stabilization point of lifted turbulent diffusion flames. Symp. (Intl) Combust. 27, 11571165.Google Scholar
Takahashi, F., John Schmoll, W. J. & Katta, V. R. 1998 Attachment mechanisms of diffusion flames. Symp. (Intl) Combust. 27 (1), 675684.Google Scholar
Takahashi, F. & Schmoll, W. J. 1991 Lifting criteria of jet diffusion flames. Symp. (Intl) Combust. 23 (1), 677683.Google Scholar
Tanahashi, M., Fujimura, M. & Miyauchi, T. 2000 Coherent fine-scale eddies in turbulent premixed flames. Proc. Combust. Inst. 28 (1), 529535.Google Scholar
Upatnieks, A., Driscoll, J. F. & Ceccio, S. L. 2002 Cinema particle imaging velocimetry time history of the propagation velocity of the base of a lifted turbulent jet flame. Proc. Combust. Inst. 29 (2), 18971903.Google Scholar
Upatnieks, A., Driscoll, J. F., Rasmussen, C. C. & Ceccio, S. L. 2004 Liftoff of turbulent jet flames – assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 138 (3), 259272.Google Scholar
Vanquickenborne, L. & van Tiggelen, A. 1966 The stabilization mechanism of lifted diffusion flames. Combust. Flame 10 (1), 5969.Google Scholar
Vedarajan, T. G. & Buckmaster, J. 1998 Edge-flames in homogeneous mixtures. Combust. Flame 114 (1), 267273.Google Scholar
Veynante, D., Trouvé, A., Bray, K. N. C. & Mantel, T. 1997 Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263293.Google Scholar
Watson, K. A., Lyons, K. M., Carter, C. D. & Donbar, J. M. 2002 Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted $\text{CH}_{4}$ /air diffusion flames. Proc. Combust. Inst. 29 (2), 19051912.Google Scholar
Watson, K. A., Lyons, K. M., Donbar, J. M. & Carter, C. D. 1999 Scalar and velocity field measurements in a lifted $\text{CH}_{4}$ –air diffusion flame. Combust. Flame 117 (1–2), 257271.Google Scholar
Watson, K. A., Lyons, K. M., Donbar, J. M. & Carter, C. D. 2000 Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame. Combust. Flame 123 (12), 252265.Google Scholar
Watson, K. A., Lyons, K. M., Donbar, J. M. & Carter, C. D. 2003 On scalar dissipation and partially premixed flame propagation. Combust. Sci. Technol. 175 (4), 649664.Google Scholar
Wohl, K., Kapp, N. M. & Gazley, C. 1949 The stability of open flames. Symp. Combust. Flame Explosion Phenom. 3 (1), 321.Google Scholar
Yamashita, H., Shimada, M. & Takeno, T. 1996 A numerical study on flame stability at the transition point of jet diffusion flames. Symp. (Intl) Combust. 26 (1), 2734.Google Scholar
Yoo, C. S., Richardson, E. S., Sankaran, R. & Chen, J. H. 2011 A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow. Proc. Combust. Inst. 33 (1), 16191627.Google Scholar
Yoo, C. S., Sankaran, R. & Chen, J. H. 2009 Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. J. Fluid Mech. 640, 453481.Google Scholar
Yu, H., Wang, C. & Ma, K. 2008 Massively parallel volume rendering using 2–3 swap image compositing. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, vol. 48, pp. 111. IEEE.Google Scholar
Yuen, F. T. C. & Gülder, Ö. L. 2013 Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis. Proc. Combust. Inst. 34 (1), 13931400.CrossRefGoogle Scholar

Karami et al. supplementary movie

Three-dimensional volume rendering of the vorticity magnitude (blue) and reaction rate (red/orange). (Only the region x/H<12 is shown.)

Download Karami et al. supplementary movie(Video)
Video 62.1 MB

Karami et al. supplementary movie

Three-dimensional volume rendering of the vorticity magnitude (blue) and reaction rate (red/orange). (Only the region x/H<12 is shown.)

Download Karami et al. supplementary movie(Video)
Video 50 MB