Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T16:26:06.492Z Has data issue: false hasContentIssue false

Mean-flow and turbulent characteristics of free and impinging jet flows

Published online by Cambridge University Press:  20 April 2006

M. K. Looney
Affiliation:
Chemical Engineering Department, University College Dublin, Upper Merrion Street, Dublin 2, Ireland Present address: Mechanical Engineering Department, Imperial College of Science and Technology, Exhibition Road, London SW7 2BX.
J. J. Walsh
Affiliation:
Chemical Engineering Department, University College Dublin, Upper Merrion Street, Dublin 2, Ireland

Abstract

Numerical solutions are presented of the governing equations for three plane flows: the laminar free jet; the developing turbulent free jet; and the turbulent impinging jet for different ratios h/b of the nozzle height h above the plate to the nozzle width b.

The accuracy of the numerical procedure is demonstrated by comparing the solution of the Navier-Stokes equations for the laminar-flow case with their analytical boundary-layer solution. For turbulent flows these equations are solved after Reynolds averaging. Closure is achieved by a two-equation turbulence model in conjunction with three alternative algebraic expressions for the turbulent stresses. The capabilities of such an approach are illustrated by the extent and consistency of the predictions and the satisfactory agreement of the measurable quantities with the more reliable experimental data in the literature. The limitations of the models employed, evident from their lack of universality, are discussed in the light of their derivation from more complex ‘single-point’ closures.

Features of the flows studied of interest include: the near-nozzle behaviour of a ‘finite’ laminar free jet; the potential core and transition regions of a turbulent free jet, along with the fully developed similarity profiles; the enhanced heat-transfer characteristics of impinging jet flows; and the similarity of the developing wall jet after impingement to the standard wall-jet configuration.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, R. K. & Bower, W. W. 1982 AIAA J. 20, 577584.
Alcaraz, E., Charnay, G. & Mathieu, J. 1977 Phys. Fluids 20, 203210.
Andrade, E. N. 1939 Proc. Phys. Soc. Lond. 51, 784793.
Antonia, R. A., Satyaprakash, B. R. & Hussain, A. K. M. F. 1980 Phys. Fluids 23, 695700.
Baines, W. D. & Keffer, J. F. 1980 In Drying '80 (ed. A. Mujumdar), vol. 1, pp. 376382.
Beltaos, W. D. & Rajaratnam, N. 1973 J. Hydraul. Res. 11, 2959.
Bickley, W. 1939 Phil. Mag. (7) 23, 727731.
Bower, W. W. & Kotansky, D. R. 1976 AIAA Paper 76621.
Bower, W. W., Kotansky, D. R. & Hoffman, G. H. 1977 In Proc. Symp. Turbulent Shear Flows, pp. 3.13.8.
Bradbury, L. J. S. 1965 J. Fluid Mech. 23, 3164.
Bradshaw, P. 1977 J. Fluid Mech. 80, 795797.
Crow, S. C. 1968 J. Fluid Mech. 33, 120.
Forthmann, E. 1934 Ing. Arch. 5, 4254.
Gardon, R. & Akfirat, J. C. 1965 Intl J. Heat Mass Transfer 8, 12611272.
Gardon, R. & Akfirat, J. C. 1966 Trans. ASME C: J. Heat Transfer 88, 101108.
Gutmark, E., Wolfshtein, M. & Wygnanski, I. 1978 J. Fluid Mech. 88, 737756.
Gutmark, E. & Wygnanski, I. 1976 J. Fluid Mech. 73, 465495.
Hanjalic, K. & Launder, B. E. 1972 J. Fluid Mech. 52, 609638.
Hardisty, H. 1977 J. Oil Col. Assn 60, 479487.
Heskestad, G. 1965 Trans. ASME E: J. Appl. Mech. 32, 7217324.
Hussain, A. K. M. F. & Clark, A. R. 1977 Phys. Fluids 20, 14161426.
Jayatilleke, C. L. V. 1969 Prog. Heat Mass Transfer 1, 193329.
Jones, W. P. & Launder, B. E. 1972 Intl J. Heat Mass Transfer 15, 301314.
Jones, W. P. & Launder, B. E. 1973 Intl J. Heat Mass Transfer 16, 11191130.
Kolmogorov, A. N. 1942 Izv. Akad. Nauk SSSR, Ser. Phys. 6, 5658.
Kotsovinos, N. E. 1976 J. Fluid Mech. 77, 305311.
Kumada, M. & Mabuchi, I. 1970 Bull. JSME 13, 7785.
Launder, B. E. 1975 J. Fluid Mech. 67, 569581.
Launder, B. E. & Morse, A. 1977 In Proc. Symp. Turbulent Shear Flows, pp. 421430.
Launder, B. E., Morse, A., Rodi, W. & Spalding, D. B. 1972 In Proc. Conf. Free Turbulent Shear Flows, p. 361; NASA SP 321.
Launder, B. E., Reece, G. J. & Rodi, W. 1975 J. Fluid Mech. 68, 537566.
Launder, B. E. & Spalding, D. B. 1974 Comp. Meth. Appl. Mech. Engng 3, 269289.
Ljuboja, M. & Rodi, W. 1979 In Proc. Symp. Turbulent Boundary Layers: Forced, Incompressible Non-Reacting (ed. H. E. Weber), pp. 131138.
Looney, M. K. 1982 Ph.D. thesis, Dept Chem. Engng, University College Dublin.
Looney, M. K. & Walsh, J. J. 1982 In Proc. Symp. on Refined Modelling of Flows, vol. 1, pp. 261271.
Mathieu, J. 1971 Von Kármán Inst., Lect. Ser. 36.
Mih, W. C. & Hoopes, J. A. 1972 J. Hydraul. Div. ASCE 00 (HY7), 12751294.
Miller, D. R. & Comings, E. W. 1957 J. Fluid Mech. 3, 116.
Newman, B. G. 1967 In Fluid Mechanics of Internal Flow (ed. G. Sovran), pp. 170209. Elsevier.
Patankar, S. V. & Spalding, D. B. 1967 Heat and Mass Transfer in Boundary Layers. Morgan-Grampion.
Patankar, S. V. & Spalding, D. B. 1972 Intl J. Heat Mass Transfer 15, 17871806.
Patel, R. P. 1970 Ph.D. thesis, McGill University, Montreal.
Prandtl, L. 1945 Nachr. Akad. Wiss. Gött. pp. 619.
Pun, W. M. & Spalding, D. B. 1976 Imp. Coll. Lond. Mech. Engng Dept Rep. HTS/76/2 (amended August 1977).
Robins, A. G. 1973 Ph.D. thesis, University of London.
Rodi, W. 1972 Ph.D. thesis, University of London.
Rodi, W. 1975 In Studies in Convection (ed. B. E. Launder), pp. 79165.
Rodi, W. 1980 In Prediction Methods for Turbulent Flows (ed. W. Kollman), pp. 259349. Von Kármán Inst.
Rodi, W. & Spalding, D. B. 1970 Wärme- und-Stoffübertragung 3, 8595.
Rotta, J. 1969 Aerodyn. Versuchsanstalt Gött. Rep. 69 A14.
Russell, P. J. & Hatton, A. P. 1972 Proc. Inst. Mech. Engrs 186, 635644.
Schauer, J. J. & Eustis, R. H. 1963 Stanford Univ. Tech. Rep. 3.
Schlichting, H. 1933 Z. angew. Math. Mech. 13, 260263.
Tailland, A. & Mathieu, J. 1967 J. Méc. 6, 103.
van der Hegge Zijnen, B. G. 1958 Appl. Sci. Res. A 7, 256313.
Van Heiningen, A. R. P., Mujumdar, A. S. & Douglas, W. J. M. 1977 In Proc. Symp. Turbulent Shear Flows, pp. 3.93.15.
Wolfshtein, M. 1967 Ph.D. thesis, Imperial College London.
Wolfshtein, M. 1969 Imp. Coll. Lond., Mech. Engng Dept Rep. EF/TN/A/17.