Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T06:11:33.681Z Has data issue: false hasContentIssue false

Mean temperature profiles in turbulent Rayleigh–Bénard convection of water

Published online by Cambridge University Press:  25 August 2009

OLGA SHISHKINA*
Affiliation:
DLR – Institute for Aerodynamics and Flow Technology, Bunsenstrasse 10, 37073 Göttingen, Germany
ANDRÉ THESS
Affiliation:
Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, P.O. Box 100565, 98684 Ilmenau, Germany
*
Email address for correspondence: [email protected]

Abstract

We report an investigation of temperature profiles in turbulent Rayleigh–Bénard convection of water based on direct numerical simulations (DNS) for a cylindrical cell with unit aspect ratio for the same Prandtl number Pr and similar Rayleigh numbers Ra as used in recent high-precision measurements by Funfschilling et al. (J. Fluid Mech., vol. 536, 2005, p. 145). The Nusselt numbers Nu computed for Pr = 4.38 and Ra = 108, 3 × 108, 5 × 108, 8 × 108 and 109 are found to be in excellent agreement with the experimental data corrected for finite thermal conductivity of the walls. Based on this successful validation of the numerical approach, the DNS data are used to extract vertical profiles of the mean temperature. We find that near the heating and cooling plates the non-dimensional temperature profiles Θ(y) (where y is the non-dimensional vertical coordinate), obey neither a logarithmic nor a power law. Moreover, we demonstrate that the Prandtl–Blasius boundary layer theory cannot predict the shape of the temperature profile with an error less than 7.9% within the thermal boundary layers (TBLs). We further show that the profiles can be approximated by a universal stretched exponential of the form Θ(y) ≈ 1 − exp(−y − 0.5y2) with an absolute error less than 1.1% within the TBLs and 5.5% in the whole Rayleigh cell. Finally, we provide more accurate analytical approximations of the profiles involving higher order polynomials in the approximation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G. 2000 Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh–Bénard convection. Phys. Rev. E 63, 015303.CrossRefGoogle ScholarPubMed
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Amati, G., Koal, K., Massaioli, F., Sreenivasan, K. R. & Verzicco, R. 2005 Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number. Phys. Fluids 17, 121701.CrossRefGoogle Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.CrossRefGoogle Scholar
Buschmann, M. & Gad-el-Hak, M. 2003 Debate concerning the mean-velocity profile of a turbulent boundary layer. AIAA J. 41, 565572.CrossRefGoogle Scholar
Calzavarini, E., Lohse, D., Toschi, F. & Tripiccione, R. 2005 Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence. Phys. Fluids 17, 055107.CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X. Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Chilla, F., Ciliberto, S., Innocenti, C. & Pampaloni, E. 1993 Boundary layer and scaling properties in turbulent thermal convection. Nuovo Cimento 15, 12291249.CrossRefGoogle Scholar
Emran, M. S. & Schumacher, J. 2008 Fine-scale statistics of temperature and its derivatives in convective turbulence. J. Fluid Mech. 611, 1334.CrossRefGoogle Scholar
Funfschilling, D., Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger. J. Fluid Mech. 536, 145154.CrossRefGoogle Scholar
Grötzbach, G. 1983 Spatial resolution requirements for direct numerical simulation of Rayleigh–Bénard convection. J. Comput. Phys. 49, 241264.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Hartlep, T., Tilgner, A. & Busse, F. H. 2005 Transition to turbulent convection in a fluid layer heated from below at moderate aspect ratio. J. Fluid Mech. 544, 309322.CrossRefGoogle Scholar
Hölling, M. & Herwig, H. 2006 Asymptotic analysis of heat transfer in turbulent Rayleigh–Bénard convection. Intl J. Heat Mass Transfer 49, 11291136.CrossRefGoogle Scholar
Kaczorowski, M. & Wagner, C. 2009 Analysis of the thermal plumes in turbulent Rayleigh–Bénard convection based on well-resolved numerical simulations. J. Fluid Mech. 618, 89112.CrossRefGoogle Scholar
Kadanoff, L. P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54, 3439.CrossRefGoogle Scholar
Kenjereš, S. & Hanjalić, K. 2006 LES, T-RANS and hybrid simulations of thermal convection at high Ra numbers. Intl J. Heat Fluid Flow 27, 800810.CrossRefGoogle Scholar
Kerr, R. M. 1996 Rayleigh number scaling in numerical convection. J. Fluid Mech. 310, 139179.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
Lui, S.-L. & Xia, K.-Q. 1998 Spatial structure of the thermal boundary layer in turbulent convection. Phys. Rev. E 57, 54945503.CrossRefGoogle Scholar
Niemela, J. J. & Sreenivasan, K. R. 2003 Confined turbulent convection. J. Fluid Mech. 481, 355384.CrossRefGoogle Scholar
du Puits, R., Resagk, C., Tilgner, A., Busse, F. H. & Thess, A. 2007 Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 572, 231254.CrossRefGoogle Scholar
van Reeuwijk, M., Jonker, H. J. J. & Hanjalić, K. 2008 a Wind and boundary layers in Rayleigh–Bénard convection. I. Analysis and modeling. Phys. Rev. E 77, 036311.CrossRefGoogle ScholarPubMed
van Reeuwijk, M., Jonker, H. J. J. & Hanjalić, K. 2008 b Wind and boundary layers in Rayleigh–Bénard convection. II. Boundary layer character and scaling. Phys. Rev. E 77, 036312.CrossRefGoogle ScholarPubMed
Schlichting, H., & Gersten, K. 2000 Boundary Layer Theory, 8th edn. Springer Verlag.CrossRefGoogle Scholar
Sergent, A., Joubert, P. & Le Quéré, P. 2006 Large Eddy Simulation of turbulent thermal convection using a mixed scale diffusivity model. Prog. Comp. Fluid Dyn. 6, 4049.CrossRefGoogle Scholar
Shishkina, O., Shishkin, A. & Wagner, C. 2009 Simulation of turbulent thermal convection in complicated domains. J. Comput. Appl. Math. 226, 336344.CrossRefGoogle Scholar
Shishkina, O. & Wagner, C. 2007 Local heat fluxes in turbulent Rayleigh–Bénard convection. Phys. Fluids 19, 085107.CrossRefGoogle Scholar
Shishkina, O. & Wagner, C. 2008 Analysis of sheet-like thermal plumes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 599, 383404.CrossRefGoogle Scholar
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42, 36503653.CrossRefGoogle ScholarPubMed
Siggia, E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulence convection in water. Phys. Rev. E 47 R2253R2256.CrossRefGoogle ScholarPubMed
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.CrossRefGoogle Scholar
Zanoun, E. S., Durst, F. & Nagib, H. 2003 Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys. Fluids 15, 30813089.CrossRefGoogle Scholar
Zhou, Q., Sun, C. & Xia, K.-Q. 2007 Morphological evolution of thermal plumes in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 074501.CrossRefGoogle ScholarPubMed