Published online by Cambridge University Press: 20 June 2019
An analytical solution of a biharmonic equation is presented in axisymmetric toroidal coordinates for Stokes flow due to surface tension gradient on the free surface of sessile drops. The stream function profiles exhibit clockwise and counter-clockwise toroidal volumes. The ring or dot formed by the downward dividing streamlines between these volumes predicts the experimentally deposited particle ring or dot well. This finding suggests that the downward dividing streamline can be taken to be a reasonable indicator of where deposition occurs. Different light patterns directed at different locations of the droplet can give rise to a single spot or ring. A relationship between the positions of the light intensity peak and possible locations of particle deposition is analysed to demonstrate that the streamlines can be generated on-demand to achieve particle deposition at predetermined locations on the substrate. Toroidal corner vortices called Moffatt eddies have appeared in other corner flows and develop in this optical Marangoni flow as well near the contact line.