Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T15:52:27.587Z Has data issue: false hasContentIssue false

Magnetohydrodynamic stability of large scale liquid metal batteries

Published online by Cambridge University Press:  07 August 2018

A. Tucs
Affiliation:
University of Greenwich, Park Row, London SE10 9LS, UK
V. Bojarevics*
Affiliation:
University of Greenwich, Park Row, London SE10 9LS, UK
K. Pericleous
Affiliation:
University of Greenwich, Park Row, London SE10 9LS, UK
*
Email address for correspondence: [email protected]

Abstract

The aim of this paper is to develop a stability theory and a numerical model for three density-stratified electrically conductive liquid layers. Using regular perturbation methods to reduce the full three-dimensional problem to the shallow layer model, the coupled wave and electric current equations are derived. The problem set-up allows for weakly nonlinear velocity field action and an arbitrary vertical magnetic field. Further linearisation of the coupled equations is used for the linear stability analysis in the case of a uniform vertical magnetic field. New analytical stability criteria accounting for the viscous damping are derived for particular cases of practical interest and compared to the numerical solutions for a variety of materials used in batteries. These new criteria are equally applicable to the aluminium electrolysis cell magnetohydrodynamic (MHD) stability estimates.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A. & Sorensen, D. 1999 Eigenvalues, eigenvectors and generalized Schur decomposition. In LAPACK Users’ Guide, 3rd edn. pp. 4850. Society for Industrial and Applied Mathematics.Google Scholar
Antille, J. & von Kaenel, R. 2002 Using a magnetohydrodynamic model to analyze pot stability in order to identify an abnormal operating condition. In Essential Readings in Light Metals, pp. 367372. Springer, Cham.Google Scholar
Bojarevics, V. 1992 Interfacial MHD waves due to the dynamic electric current interaction in an aluminium electrolysis cell. Magnetohydrodynamics 4, 4755.Google Scholar
Bojarevics, V. 1998 Non-linear waves with electromagnetic interaction in aluminium electrolysis cells. Prog. Astronaut. Aeronaut. 58, 833848.Google Scholar
Bojarevics, V. & Evans, J. W. 2015 Mathematical modelling of Hall–Heroult pot instability and verification of measurements of anode current distribution. In Light Metals 2015, pp. 783788. Springer, Cham.Google Scholar
Bojarevics, V. & Romerio, M. V. 1994 Long waves instability of liquid metal-electrolyte interface in aluminium electrolysis cells: a generalisation of Sele’s criterion. Eur. J. Mech. B13, 3356.Google Scholar
Bojarevics, V. & Tucs, A. 2017 MHD of large scale liquid metal batteries. In Light Metals 2017, pp. 687692. Springer, Cham.Google Scholar
Bradwell, D. J., Kim, H., Sirk, A. H. C. & Sadoway, D. R. 2012 Magnesium–Antimony liquid metal battery for stationary energy storage. J. Am. Chem. Soc. 134, 18951895.Google Scholar
Davidson, P. A. & Lindsay, R. I. 1998 Stability of interfacial waves in aluminium reduction cells. J. Fluid Mech. 362, 273295.Google Scholar
Gantmacher, F. R. 1959 The Routh–Hurwitz theorem. In Application of the Theory of Matrices (ed. Brenner, J. L.), pp. 226233. Wiley.Google Scholar
Herreman, W., Nore, C., Cappanera, L. & Guermond, J.-L. 2015 Tayler instability in liquid metal columns and liquid metal batteries. J. Fluid Mech. 771, 79114.Google Scholar
Horstmann, G. M., Weber, N. & Weier, T. 2018 Coupling and stability of interfacial waves in liquid metal batteries. J. Fluid Mech. 845, 135.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Damping of gravity waves. In Fluid Mechanics (ed. Sykes, J. B. & Reid, W. H.), pp. 9294. Pergamon Press.Google Scholar
Kelley, D. H. & Sadoway, D. R. 2014 Mixing in a liquid metal electrode. Phys. Fluids 26, 057102.Google Scholar
Kim, H., Boysen, D. A., Newhouse, J. M., Spatocco, B. L., Chung, B., Burke, P. J., Bradwell, D. J., Jiang, K., Tomaszowska, A. A., Wang, K., Wei, W., Ortiz, L. A., Barriga, S. A., Poizeau, S. M. & Sadoway, D. R. 2013 Liquid metal batteries: past, present, and future. Chem. Rev. 113, 20752099.Google Scholar
Moreau, R. & Evans, J. W. 1984 An analysis of the hydrodynamics of aluminium reduction cells. J. Electrochem. Soc. 131, 22512259.Google Scholar
Moreau, R. J. & Ziegler, D. 2016 Stability of aluminium cells: a new approach. In Essential Readings in Light Metals, pp. 336341. Springer, Cham.Google Scholar
Munger, D. & Vincent, A. 2008 A cylindrical model for rotational MHD instabilities in aluminium reduction cells. J. Theor. Comput. Fluid Dyn. 22, 363382.Google Scholar
Robino, A., Brandt, P. & Weigle, R. 2001 On the dynamics of internal waves in a nonlinear, weakly nonhydrostatic three-layer ocean. J. Geophys. Res. 106, 2689926915.Google Scholar
Rodi, W. 1987 Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys. Res. 92, 53055328.Google Scholar
Sele, T. 1977 Instabilities of the metal surface in electrolyte alumina reduction cells. Metall. Trans. B 8B, 613618.Google Scholar
Shen, Y. & Zikanov, O. 2016 Thermal convection in a liquid metal battery. J. Theor. Comput. Fluid Dyn. 30, 275294.Google Scholar
Sneyd, A. D. 1985 Stability of fluid layers carrying a normal electric current. J. Fluid Mech. 156, 223236.Google Scholar
Sneyd, A. D. & Wang, A. 1994 Interfacial instability due to MHD Mode coupling in aluminium reduction cells. J. Fluid Mech. 263, 343359.Google Scholar
Urata, N. 2016 Magnetics and metal pad instability. In Essential Readings in Light Metals, pp. 330335. Springer, Cham.Google Scholar
Weber, N., Beckstein, P., Herreman, W., Horstmann, G. M., Nore, C., Stefani, F. & Weier, T. 2017 Sloshing instability and electrolyte layer rupture in liquid metal batteries. Phys. Fluids. 29, 054101.Google Scholar
Weber, N., Galindo, V., Stefani, F., Priede, J. & Weier, T. 2015 The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries. Phys. Fluids. 27, 014103.Google Scholar
Weber, N., Galindo, V., Stefani, F. & Weier, T. 2014 Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them. J. Power. Sources 265, 166173.Google Scholar
Zikanov, O. 2015 Metal pad instabilities in liquid metal batteries. Phys. Rev. E 92, 063021.Google Scholar
Zikanov, O. 2018 Shallow water modeling of rolling pad instability in liquid metal batteries. J. Theor. Comput. Fluid Dyn. 32, 325347.Google Scholar
Zikanov, O., Thess, A., Davidson, P. A. & Ziegler, D. P. 2000 A new approach to numerical simulation of the melts flows and interface instability in Hall–Heroult cells. Metall. Trans. 31B, 15411550.Google Scholar