Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T05:07:59.675Z Has data issue: false hasContentIssue false

Magnetohydrodynamic flows and turbulence: a report on the Third Beer-Sheva Seminar

Published online by Cambridge University Press:  20 April 2006

H. Branover
Affiliation:
Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
A. J. Mestel
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge
D. J. Moore
Affiliation:
Department of Engineering, University of Cambridge
J. A. Shercliff
Affiliation:
Department of Engineering, University of Cambridge

Abstract

This paper is a summary of the Third Beer-Sheva Seminar on magnetohydrodynamic (MHD) flows and turbulence, held in Israel in March 1981 with 67 participants from 9 countries. Reviews and research papers were presented on fundamental MHD and turbulence studies, both theoretical and experimental, including two-phase phenomena, and on applications of MHD to electrical generation (especially in two-phase systems), electromagnetic pumps, flow-couplers and flowmeters, thermonuclear fusion and a range of metallurgical problems, many involving free surfaces.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexion, C. C. & Hummert, G. T. A two-dimensional numerical model for MHD flow in rectangular ducts.
Baker, R. C. Present status of MHD flow-measurements (review).
Block, F. R. New electromagnetic measuring methods in continuous casting.
Branover, H. 1978 Magnetohydrodynamic Flow in Ducts. Wiley.
Branover, H. Current work in the MHD laboratory of the Ben-Gurion University of the Negev.
Branover, H. & Claesson, S. Experimental studies of gallium duct flows in extremely strong magnetic fields.
Branover, H., Claesson, S., El-Boher, A. & Yakhot, A. Operating models of two-phase heavy metal MHD power systems.
Branover, H. & Gershon, P. 1979 J. Fluid Mech. 94, 629.
Branover, H., Hunt, J. C. R., Proctor, M. R. E. & Pierson, E. S. 1979 J. Fluid Mech. 91, 563.
Branover, H. & Yakhot, A. 1980 Proc. 2nd Bat-ShevaSeminar on MHD Flows and Turbulence. Israel University Press.
Colgate, S. A., Furth, H. P. & Halliday, F. O. 1960 Rev. Mod. Phys. 32, 744.
Davidson, D. F. & Thatcher, G. 1974 Liquid sodium electrotechnology. Proc. I. Mech. E. Conf. on Pumps for Nuclear Power Plants.
Fabris, G. Formulation of the slip loss in a two-phase liquid metal MHD generator.
Fautrelle, Y. R. 1981 J. Fluid Mech. 102, 405.
Fautrelle, Y. R. Single-phase electromagnetic stirring and its metallurgical applications.
Fujii-E, Y. Experimental studies of liquid metal two-phase flow in travelling and DC magnetic fields (review).
Fujii-E, Y., Saito, M., Inoue, S. & Suita, T. 1975 J. Nucl. Sci. & Tech. 12, 199.
Garnier, M. 1979 J. Méc. Appl. 3, 3.
Garnier, M. Electromagnetic devices for molten metal confinement.
Garnier, M. & Etay, J. Liquid metal columns confined by external parallel conductors and surface tension. Part II, experiments.
Gershon, P. 1981 Experimental studies of two-phase flow of mercury in the presence of a magnetic field. Ph.D. thesis, Purdue University.
Hide, R. 1977 Quart. J. Roy. Met. Soc. 103, 1.
Hide, R. Geophysical turbulence and stable baroclinic eddies in rotating laboratory systems, numerical models and natural systems.
Hide, R. & Mason, P. J. 1975 Adv. Phys. 24, 47.
Hughes, W. J. & McNab, I. R. A quasi-one-dimensional analysis of an electromagnetic pump including end effects.
Hunt, J. C. R. & Maxey, M. 1980 Proc. 2nd Bat-Sheva Seminar on MHD Flows and Turbulence, p. 249. Israel University Press.
Hunt, J. C. R. & Moreau, R. 1976 J. Fluid Mech. 78, 261.
Itoh, Y. & Fujii-E, Y. Fusion applications of an imploding shell initially formed by falling liquid metal.
Itoh, Y., Kanagawa, T., Miyazaki, K. & Fujii-E, Y. Geometric integrity of a metallic cylindrical shell magnetically imploded on an axial magnetic field.
Jackson, W. D. Present status of MHD power generator (review).
Kuromori, K., Kobayashi, T. & Kanai, H. 1978 Proc IMEKO Symp. Japan, paper 6b-4.
Ludford, G. S. S. & Walker, J. S. 1980 Proc 2nd Bat-Sheva Seminar on MHD Flows and Turbulence, p. 83. Israel University Press.
Lykoudis, P. S. 1976 Proc 1st Bat-Sheva Seminar on MHD Flows and Turbulence, p. 103. Wiley and Israel University Press.
Lykoudis, P. S. Current work in the MFM laboratory of Purdue University.
Martin, P. C. & De Dominicis, C. 1978 Suppl. Prog. Theor. Phys. 64, 108.
Marty, Ph., Alemany, A., Ricou, R. & Vives, Ch. Pressure and velocity distribution around an obstacle immersed in liquid metal subjected to electromagnetic forces.
Mcnab, I. R. 1980 Proc 2nd Bat-Sheva Seminar on MHD Flows and Turbulence, p. 175. Israel University Press.
Mcnab, I. R., Alexion, C. C., Keeton, A. R. & Ciarelli, P. A. High interaction parameter MFD studies in a large NaK loop.
Mcnab, I. R., Alexion, C. C. & Winkleback, R. K. High efficiency DC electromagnetic flowcouplers for the LMFBR.
Mestel, A. J. Magnetic levitation of liquid metals.
Michael, I. Experimental investigation of MHD pressure drop across meander-shaped channels.
Moore, D. J. & Hunt, J. C. R. Electromagnetic stirring in the coreless induction furnace.
Moreau, R. Why, how and when MHD turbulence becomes two-dimensional (review).
Naot, D. & Rodi, W. Interactions of turbulent eddies with a free surface.
Narasimha, R. Relaminarization - MHD and otherwise (review).
Narasimha, R. & Sreenivasan, K. R. 1973 J. Fluid Mech. 61, 417.
Pierson, E. S. & Hermann, H. Solar-powered liquid metal MHD performance and cost studies.
Pierson, E. S., Hermann, H. & Petrick, M. Conceptual design of a coal-fired retrofit liquid metal MHD power system.
Rosenbrock, H. H. & Tagg, J. R. 1951 Proc I.E.E. 98 (II), 438.
Rossow, V. J. 1960 Rev. Mod. Phys. 32, 987.
Saito, M., Inoue, S. & Fujii-E, Y. 1978 J. Nucl. Sci. & Tech. 15, 476.
Sen, J. 1978 Proc. of FLOMEKO 1978, Flow Measurement in Fluids Conf., Groningen, The Netherlands, p. 223.
Shercliff, J. A. 1956 J. Nucl. Energy 3, 305.
Shercliff, J. A. 1981 Proc. Roy. Soc. A 375, 455.
Shercliff, J. A. Liquid metal columns confined by external parallel conductors and surface tension. Part I: two dimensional theory.
Sluyter, M. The U.S. National MHD Programme.
Sneyd, A. 1971 J. Fluid Mech. 49, 817.
Sneyd, A. 1979 J. Fluid Mech. 92, 35.
Somméria, J. 1980 Thèse de Troisième Cycle, Univ. de Grenoble.
Sutton, G. W. & Carlson, A. W. 1961 J. Fluid Mech. 11, 121.
Timnat, Y. M. Velocity and particle size measurements by a laser technique.
Vives, Ch. & Ricou, R. Liquid-solid separation in a molten metal by a stationary electromagnetic field.
Wagner, L. 1981 Nucleate boiling of mercury in the presence of a magnetic field. Ph.D. thesis, Purdue University.
Walker, J. S. 1981 J. Méc. 20, 79.
Walker, J. S. Three-dimensional laminar MHD flows in rectangular ducts with thin conducting walls and strong transverse magnetic fields.
Winowich, N. S. & Hughes, W. F. A finite-element analysis of two-dimensional MHD flow.
Yakhot, A. & Branover, H. 1981 Proc 19th Symp. on Engineering Aspects of MHD, Tullahoma, Tennessee, U.S.A.
Yakhot, A. & Branover, H. Analytical model of two-phase LMMHD generator.
Yakhot, V. 1981 Phys. Rev. A 23, 1486.
Yakhot, V. Small-scale properties of a randomly stirred turbulent field.