Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T11:24:02.105Z Has data issue: false hasContentIssue false

The low-shear limit of the effective viscosity of a solution of charged macromolecules

Published online by Cambridge University Press:  19 April 2006

William B. Russel
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08540

Abstract

The effect of pair interactions between charged macromolecules on the bulk stress is calculated for the Newtonian low-shear limit. Electrostatic force laws are derived for molecular conformations corresponding to the limits of weak and strong intramolecular repulsions and used to determine the equilibrium pair distribution function and the perturbation due to the flow. Intramolecular and near-field intermolecular hydrodynamic interactions are neglected as appropriate for so-called free draining macromolecules. The resulting bulk stress contains separate contributions from the far-field hydrodynamic interactions and the electrostatic forces. The coefficient of the O(c2) term in the viscosity which equals 0.4 in the purely hydrodynamic limit is predicted to increase dramatically with decreasing ionic strength for charged macromolecules in agreement with experimental data in the literature.

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, J. M. 1977 Macromolecules 10, 725.
Batchelor, G. K. 1970 J. Fluid Mech. 41, 545.
Batchelor, G. K. 1977 J. Fluid Mech. 83, 97.
Batchelor, G. K. & Green, J. T. 1972 J. Fluid Mech. 56, 375, 401.
Bell, G. M. & Levine, S. 1966 Disc. Far. Soc. 42, 69.
Berry, G. C. 1967 J. Chem. Phys. 46, 1338.
Bird, R. B., Hassager, O., Armstrong, R. C. & Curtiss, C. F. 1977 Dynamics of Polymeric Liquids: Vol II Kinetic Theory. John Wiley.
Brinkman, H. C. 1947 Ned. Akad. v. Wet. Amster. 50, 618, 821.
Debye, P. & Bueche, A. M. 1948 J. Chem. Phys. 16, 573.
Edwards, S. F. 1965 Proc. Phys. Soc. 85, 613.
Felderhof, B. U. 1976 Physica A 82, 596, 611.
Fixman, M. 1965 J. Chem. Phys. 42, 3831.
Freed, K. F. & Edwards, S. F. 1975 J. Chem. Phys. 62, 4032.
Flory, P. J. 1945 J. Chem. Phys. 13, 453.
Flory, P. J. & Krigbaum, W. R. 1950 J. Chem. Phys. 18, 1086.
De Gennes, P.-G. 1969 Rep. Prog. Phys. 32, 187.
De Gennes, P.-G., Pincus, P. & Velasco, R. M. 1976 J. Phys. (Paris) 37, 1461.
Hermans, J. J. & Overbeek, J. TH. G. 1948 Rec. Trav. Chim. 67, 761.
Kirkwood, J. G. 1934 J. Chem. Phys. 2, 767.
Kirkwood, J. G., Buff, F. P. & Green, M. S. 1949 J. Chem. Phys. 17, 988.
Kirkwood, J. G. & Riseman, J. 1948 J. Chem. Phys. 16, 565.
Manning, G. S. 1974 In Polyelectrolytes (ed. E. Sélégny), pp. 937. Reidel.
Moan, M. & Wolff, C. 1974 Die Makrom. Chemie 175, 2881.
Mungan, N. 1972 Soc. Petr. Eng. J. 12, 469.
Pals, D. T. F. & Hermans, J. J. 1952 Rec. Trav. Chim. 71, 433.
Peterson, J. M. & Fixman, M. 1963 J. Chem. Phys. 39, 2516.
Richmond, P. 1973 J. Phys. A 6, L109.
Rouse, P. E. 1953 J. Chem. Phys. 21, 1272.
Russel, W. B. 1976 J. Coll. Inter. Sci. 55, 590.
Russel, W. B. 1978 J. Fluid Mech. 85, 209.
Saito, N. 1950 J. Phys. Soc. Japan 5, 4.
Schowalter, W. R. 1978 Mechanics of Rheologically Complex Fluids. Pergamon.
Williams, M. C. 1966 A.I.Ch.E.J. 12, 1064.
Williams, M. C. 1967 A.I.Ch.E. J. 13, 534.
Williams, M. C. 1975 A.I.Ch.E. J. 21, 1.
Yamakawa, H. 1961 J. Chem. Phys. 34, 1360.
Yamakawa, H. 1971 Modern Theory of Polymer Solutions. Harper and Row.
Zimm, B. H. 1956 J. Chem. Phys. 24, 269.