Article contents
Low-Reynolds-number effects in a fully developed turbulent channel flow
Published online by Cambridge University Press: 26 April 2006
Abstract
Low-Reynolds-number effects are observed in the inner region of a fully developed turbulent channel flow, using data obtained either from experiments or by direct numerical simulations. The Reynolds-number influence is observed on the turbulence intensities and to a lesser degree on the average production and dissipation of the turbulent energy. In the near-wall region, the data confirm Wei & Willmarth's (1989) conclusion that the Reynolds stresses do not scale on wall variables. One of the reasons proposed by these authors to account for this behaviour, namely the ‘geometry’ effect or direct interaction between inner regions on opposite walls, was investigated in some detail by introducing temperature at one of the walls, both in experiment and simulation. Although the extent of penetration of thermal excursions into the opposite side of the channel can be significant at low Reynolds numbers, the contribution these excursions make to the Reynolds shear stress and the spanwise vorticity in the opposite wall region is negligible. In the inner region, spectra and co-spectra of the velocity fluctuations u and v change rapidly with the Reynolds number, the variations being mainly confined to low wavenumbers in the u spectrum. These spectra, and the corresponding variances, are discussed in the context of the active/inactive motion concept and the possibility of increased vortex stretching at the wall. A comparison is made between the channel and the boundary layer at low Reynolds numbers.
- Type
- Research Article
- Information
- Copyright
- © 1992 Cambridge University Press
References
- 178
- Cited by