Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T18:56:13.724Z Has data issue: false hasContentIssue false

Low-order models for predicting radiative transfer effects on Rayleigh–Bénard convection in a cubic cell at different Rayleigh numbers

Published online by Cambridge University Press:  21 April 2021

Laurent Soucasse*
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 8-10 rue Joliot Curie, 91192Gif-sur-Yvette, France
Bérengère Podvin
Affiliation:
LISN, CNRS, Université Paris-Saclay, Bât 507, rue du Belvédère, Campus Universitaire, 91405Orsay, France
Philippe Rivière
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 8-10 rue Joliot Curie, 91192Gif-sur-Yvette, France
Anouar Soufiani
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 8-10 rue Joliot Curie, 91192Gif-sur-Yvette, France
*
Email address for correspondence: [email protected]

Abstract

This paper presents low-order models of Rayleigh–Bénard convection of a radiating gas in a cubic cell, in the Rayleigh number range $Ra \in [ 10^6\text {--}10^8 ]$. Numerical simulations are carried out for an air–$\textrm {H}_2\textrm {O}$$\textrm {CO}_2$ mixture assumed to be radiating (coupled case) or transparent (uncoupled case). When coupling with radiation, it is shown that the kinetic energy of the flow and the thermal energy increase. At $Ra=10^6$, planar flow states are observed when radiation is taken into account, while diagonal flow states prevail in the uncoupled case. From $Ra\ge 3\times 10^7$, quasi-stable diagonal flows are observed in both coupled and uncoupled simulations, with occasional brief reorientations. The reorientation frequency seems to decrease with the Rayleigh number and seems to increase with radiation. A proper orthogonal decomposition (POD) analysis reveals that 11 of the first 12 POD eigenfunctions are preserved over the Rayleigh number range, whatever the coupling conditions. However, POD eigenvalues are higher with radiation. POD-based low-order models are derived at different Rayleigh numbers, for both coupled and uncoupled cases. Radiative transfer effects are added in the model in an a priori fashion, from uncoupled simulation data. Coupled POD models predict the energy increase with radiation and the loss of stability of the diagonal rolls at $Ra=10^6$. Uncoupled and coupled models correctly reproduce reorientation frequencies over the Rayleigh number range. Finally, a generalised model is derived, solely based on uncoupled simulation data at $Ra=10^7$ and energy scaling laws. This generalised model captures the change in dynamics associated with radiation effects and variations in Rayleigh number, except at $Ra=10^6$.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araujo, F.F., Grossmann, S. & Lohse, D. 2005 Wind reversals in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084502.10.1103/PhysRevLett.95.084502CrossRefGoogle ScholarPubMed
Bai, K., Ji, D. & Brown, E. 2016 Ability of a low-dimensional model to predict geometry-dependent dynamics of large-scale coherent structures in turbulence. Phys. Rev. E 93, 023117.10.1103/PhysRevE.93.023117CrossRefGoogle ScholarPubMed
Bailon-Cuba, J., Emran, M.S. & Schumacher, J. 2010 Aspect ratio dependece of heat transfer and large-scale flow in turbulent convection. J. Fluid Mech. 655, 152173.10.1017/S0022112010000820CrossRefGoogle Scholar
Benzi, R. & Verzicco, R. 2008 Numerical simulations of flow reversal in Rayleigh–Bénard convection. Europhys. Lett. 80, 64008.10.1209/0295-5075/81/64008CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.10.1146/annurev.fl.25.010193.002543CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.CrossRefGoogle ScholarPubMed
Brown, E. & Ahlers, G. 2008 Azimuthal asymmetries of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 105105.10.1063/1.2991432CrossRefGoogle Scholar
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.10.1103/PhysRevLett.95.084503CrossRefGoogle ScholarPubMed
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.10.1017/S0022112089001643CrossRefGoogle Scholar
Chandra, M. & Verma, M.K. 2011 Dynamics and symmetries of flow reversals in turbulent convection. Phys. Rev. E 83, 067303.10.1103/PhysRevE.83.067303CrossRefGoogle ScholarPubMed
Foroozani, N., Niemela, J.J., Armenio, V. & Sreenivasan, K.R. 2017 Reorientations of the large-scale flow in turbulent convection in a cube. Phys. Rev. E 95, 033107.10.1103/PhysRevE.95.033107CrossRefGoogle Scholar
Giannakis, D., Kolchinskaya, A., Krasnov, D. & Schumacher, J. 2018 Koopman analysis of the long-term evolution in a turbulent convection cell. J. Fluid Mech. 847, 735767.10.1017/jfm.2018.297CrossRefGoogle Scholar
Holmes, P., Lumley, J. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.10.1017/CBO9780511622700CrossRefGoogle Scholar
Ji, D. & Brown, E. 2020 Low-dimensional model of the large-scale circulation of turbulent Rayleigh–Bénard convection in a cubic container. Phys. Rev. Fluids 5, 064606.10.1103/PhysRevFluids.5.064606CrossRefGoogle Scholar
Kogawa, T., Okajima, J., Sakurai, A., Komiya, A. & Maruyama, S. 2017 Influence of radiation effect on turbulent natural convection in cubic cavity at normal temperature atmospheric gas. Intl J. Heat Mass Transfer 104, 456466.10.1016/j.ijheatmasstransfer.2016.08.059CrossRefGoogle Scholar
Mishra, P.K., De, A.K., Verma, M.K. & Eswaran, V. 2011 Dynamics of reorientations and reversals of large-scale flow in Rayleigh–Bénard convection. J. Fluid Mech. 668, 480499.10.1017/S0022112010004830CrossRefGoogle Scholar
Moin, P. & Moser, R.D. 1989 Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech. 200, 471509.10.1017/S0022112089000741CrossRefGoogle Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2015 Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection. J. Fluid Mech. 778, R5.10.1017/jfm.2015.433CrossRefGoogle Scholar
Pierrot, L., Rivière, P., Soufiani, A. & Taine, J. 1999 A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases. J. Quant. Spectrosc. Radiat. Transfer 62, 609624.10.1016/S0022-4073(98)00124-1CrossRefGoogle Scholar
Podvin, B. & Le Quéré, P. 2001 Low-order models for the flow in a differentially heated cavity. Phys. Fluids 13 (11), 32043214.10.1063/1.1408919CrossRefGoogle Scholar
Podvin, B. & Sergent, A. 2012 Proper orthogonal decomposition investigation of turbulent Rayleigh–Bénard convection in a rectangular cavity. Phys. Fluids 24, 105106.10.1063/1.4757663CrossRefGoogle Scholar
Podvin, B. & Sergent, A. 2015 A large-scale investigation of wind reversal in a square Rayleigh–Bénard cell. J. Fluid Mech. 766, 172201.10.1017/jfm.2015.15CrossRefGoogle Scholar
Podvin, B. & Sergent, A. 2017 Precursor for wind reversal in a square Rayleigh–Bénard cell. Phys. Rev. E 95, 013112.CrossRefGoogle Scholar
Puigjaner, D., Herrero, J., Giralt, F. & Simó, C. 2004 Stability analysis of the flow in a cubical cavity heated from below. Phys. Fluids 16, 3639.10.1063/1.1778031CrossRefGoogle Scholar
Puigjaner, D., Herrero, J., Simó, C. & Giralt, F. 2008 Bifurcation analysis of steady Rayleigh–Bénard convection in a cubical cavity with conducting sidewalls. J. Fluid Mech. 598, 393427.10.1017/S0022112007000080CrossRefGoogle Scholar
Shishkina, O., Stevens, R.J.A.M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamic of coherent structures. Part I: coherent structures. Q. Appl. Maths 45 (3), 561571.CrossRefGoogle Scholar
Soucasse, L. 2013 Effets des transferts radiatifs sur les écoulements de convection naturelle dans une cavité différentiellement chauffée en régimes transitionnel et faiblement turbulent. PhD thesis, École Centrale Paris, France.Google Scholar
Soucasse, L., Podvin, B., Rivière, P. & Soufiani, A. 2019 Proper orthogonal decomposition analysis and modelling of large-scale flow reorientations in a cubic Rayleigh–Bénard cell. J. Fluid Mech. 881, 2350.CrossRefGoogle Scholar
Soucasse, L., Podvin, B., Rivière, P. & Soufiani, A. 2020 Reduced-order modelling of radiative transfer effects on Rayleigh–Bénard convection in a cubic cell. J. Fluid Mech. 898, A2.CrossRefGoogle Scholar
Soucasse, L., Rivière, P. & Soufiani, A. 2014 a Effects of molecular gas radiation on Rayleigh–Bénard convection in a 3D cubical cavity. In Proceedings of the 15th International Heat Transfer Conference, pp. IHTC15–9563. Begell House.CrossRefGoogle Scholar
Soucasse, L., Rivière, P. & Soufiani, A. 2014 b Subgrid-scale model for radiative transfer in turbulent participating media. J. Comput. Phys. 257 (Part A), 442459.CrossRefGoogle Scholar
Soucasse, L., Rivière, P. & Soufiani, A. 2016 Natural convection in a differentially heated cubical cavity under the effects of wall and molecular gas radiation at Rayleigh numbers up to $3\times 10^9$. Intl J. Heat Fluid Flow 61-B, 510530.10.1016/j.ijheatfluidflow.2016.06.012CrossRefGoogle Scholar
Soucasse, L., Rivière, P., Xin, S., Le Quéré, P. & Soufiani, A. 2012 Numerical study of coupled molecular gas radiation and natural convection in a differentially heated cubical cavity. Comput. Therm. Sci. 4, 335350.CrossRefGoogle Scholar
Soufiani, A. 1991 Temperature turbulence spectrum for high-temperature radiating gases. J. Thermophys. 5 (4), 489494.10.2514/3.291CrossRefGoogle Scholar
Spiegel, E.A. 1957 The smoothing of temperature fluctuations by radiative transfer. Astrophys. J. 126, 202207.CrossRefGoogle Scholar
Sreenivasan, K.R., Bershadski, A. & Niemela, J.J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65, 056306.10.1103/PhysRevE.65.056306CrossRefGoogle ScholarPubMed
Sugiyama, K., Ni, R., Stevens, R.J.A.M., Chan, T.S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D., 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.CrossRefGoogle ScholarPubMed
Vasiliev, A., Frick, P., Kumar, A., Stepanov, R., Sukhanovskii, A. & Verma, M.K. 2019 Transient flows and reorientations of large-scale convection in a cubic cell. Intl Commun. Heat Mass Transfer 108, 104319.10.1016/j.icheatmasstransfer.2019.104319CrossRefGoogle Scholar
Vasiliev, A., Sukhanovskii, A., Frick, P., Budnikov, A., Fomichev, V., Bolshukhin, M. & Romanov, R. 2016 High Rayleigh number convection in a cubic cell with adiabatic sidewalls. Intl J. Heat Mass Transfer 102, 201212.10.1016/j.ijheatmasstransfer.2016.06.015CrossRefGoogle Scholar
Vasiliev, A.Y. & Frick, P.G. 2011 Reversals of large-scale circulation in turbulent convection in rectangular cavities. JETP Lett. 93, 330334.10.1134/S0021364011060117CrossRefGoogle Scholar
Wang, Y., Sergent, A., Saury, D., Lemonnier, D. & Joubert, P. 2020 Numerical study of an unsteady confined thermal plume under the influence of gas radiation. Intl J. Therm. Sci. 156, 106474.CrossRefGoogle Scholar
Xi, H.-D. & Xia, K.-Q. 2008 Azimuthal motion, reorientation, cessation, and reversal of the large-scale circulation in turbulent thermal convection: A comparative study in aspect ratio one and one-half geometries. Phys. Rev. E 78, 036326.CrossRefGoogle ScholarPubMed
Xin, S., Chergui, J. & Le Quéré, P. 2008 3D spectral parallel multi-domain computing for natural convection flows. In Parallel Computational Fluid Dynamics, Lecture Notes in Computational Science and Engineering book Series (ed. D. Tromeur-Dervout, G. Brenner, D.R. Emerson & J. Erhel), vol. 74, pp. 163–171. Springer.CrossRefGoogle Scholar
Xin, S. & Le Quéré, P. 2002 An extended Chebyshev pseudo-spectral benchmark for the 8:1 differentially heated cavity. Numer. Meth. Fluids 40, 981998.CrossRefGoogle Scholar