Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T15:03:05.988Z Has data issue: false hasContentIssue false

Low-frequency vibrations of two-dimensional droplets on heterogeneous substrates

Published online by Cambridge University Press:  07 August 2014

Nikos Savva
Affiliation:
School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
Serafim Kalliadasis*
Affiliation:
Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

We present a theoretical investigation of the effects of low-frequency vibrations on the motion of two-dimensional droplets on heterogeneous substrates in the presence of gravity and substrate heterogeneities, both chemical and topographical. A combined analytical and numerical approach is undertaken, extending the work of Savva & Kalliadasis (J. Fluid Mech., vol. 725, 2013, pp. 462–491) on inclined heterogeneous substrates to include the effects of substrate vibrations. Via a matching procedure and under the quasi-static assumption, we obtain evolution equations for the moving fronts. These equations are then invoked in a wide variety of case studies. It is demonstrated that vertically vibrated horizontal ratcheted substrates can induce unidirectional motion. For inclined substrates, we focus on a number of qualitative aspects of the peculiar vibration-induced climbing of droplets reported in experiments by Brunet, Eggers & Deegan (Phys. Rev. Lett., vol. 99, 2007, art. 144501). We examine the effects of weak inertia on the dynamics, deduce analytical criteria for the uphill motion in the limit of weak gravitational and vibrational effects, and demonstrate that substrate heterogeneities may be utilised to enhance droplet transport.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benilov, E. S. 2010 Drops climbing uphill on a slowly oscillating substrate. Phys. Rev. E 82, 026320.CrossRefGoogle ScholarPubMed
Benilov, E. S. 2011 Thin three-dimensional drops on a slowly oscillating substrate. Phys. Rev. E 84, 066301.CrossRefGoogle ScholarPubMed
Benilov, E. S. & Billingham, J. 2011 Drops climbing uphill on an oscillating substrate. J. Fluid Mech. 674, 93119.CrossRefGoogle Scholar
Benilov, E. S. & Cummins, C. P. 2013 Thick drops on a slowly oscillating substrate. Phys. Rev. E 88, 023013.Google ScholarPubMed
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.CrossRefGoogle Scholar
Bormashenko, E., Pogreb, R., Stein, T., Whyman, G., Erlich, M., Musin, A., Machavariani, V. & Aurbach, D. 2008 Characterization of rough substrates with vibrated drops. Phys. Chem. Chem. Phys. 10, 40564061.CrossRefGoogle ScholarPubMed
Bormashenko, E., Pogreb, R., Whyman, G., Bormashenko, Y. & Erlich, M. 2007a Vibration-induced Cassie–Wenzel wetting transition on rough surfaces. Appl. Phys. Lett. 90, 201917.CrossRefGoogle Scholar
Bormashenko, E., Pogreb, R., Whyman, G. & Erlich, M. 2007b Cassie–Wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic Cassie–Wenzel wetting transition a 2D or 1D affair? Langmuir 23, 65016503.CrossRefGoogle ScholarPubMed
Bormashenko, E., Pogreb, R., Whyman, G. & Erlich, M. 2007c Resonance Cassie–Wenzel transition for horizontally vibrated drops deposited on a rough surface. Langmuir 23, 1221712221.CrossRefGoogle ScholarPubMed
Bostwick, J. B. & Steen, P. H. 2009 Capillary oscillations of a constrained liquid drop. Phys. Fluids 21, 032108.CrossRefGoogle Scholar
Brunet, P., Eggers, J. & Deegan, R. D. 2007 Vibration-induced climbing of drops. Phys. Rev. Lett. 99, 144501.CrossRefGoogle ScholarPubMed
Brunet, P., Eggers, J. & Deegan, R. D. 2009 Motion of a drop driven by substrate vibrations. Eur. Phys. J., Spec. Top. 166, 1114.CrossRefGoogle Scholar
Celestini, F. & Kofman, R. 2006 Vibration of submillimeter-size supported droplets. Phys. Rev. E 73, 041602.CrossRefGoogle ScholarPubMed
Daniel, S. & Chaudhury, M. K. 2002 Rectified motion of liquid drops on gradient surfaces induced by vibration. Langmuir 18, 34043407.CrossRefGoogle Scholar
Daniel, S., Chaudhury, M. K. & de Gennes, P.-G. 2005 Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 21, 42404248.CrossRefGoogle ScholarPubMed
Daniel, S., Sircar, S., Gliem, J. & Chaudhury, M. K. 2004 Ratcheting motion of liquid drops on gradient surfaces. Langmuir 20, 40854092.CrossRefGoogle ScholarPubMed
Della Volpe, C., Maniglio, D., Morra, M. & Siboni, S. 2002 The determination of a ‘stable-equilibrium’ contact angle on heterogeneous and rough surfaces. Colloids Surf. A 206, 4767.CrossRefGoogle Scholar
Dong, L., Chaudhury, A. & Chaudhury, M. K. 2006 Lateral vibration of a water drop and its motion on a vibrating surface. Eur. Phys. J. E 21, 231242.CrossRefGoogle ScholarPubMed
Duncombe, T. A., Erdem, E. Y., Shastry, A., Baskaran, R. & Böhringer, K. F. 2012a Controlling liquid drops with texture ratchets. Adv. Mater. 24, 15451550.CrossRefGoogle ScholarPubMed
Duncombe, T. A., Parsons, J. F. & Böhringer, K. F. 2012b Directed drop transport rectified from orthogonal vibrations via a flat wetting barrier ratchet. Langmuir 28, 1376513770.CrossRefGoogle Scholar
Fayzrakhmanova, I. S. & Straube, A. V. 2009 Stick–slip dynamics of an oscillated sessile drop. Phys. Fluids 21, 072104.CrossRefGoogle Scholar
Hocking, L. M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Maths 36 (1), 5569.CrossRefGoogle Scholar
Hocking, L. M. 1992 Rival contact-angle models and the spreading of drops. J. Fluid Mech. 239, 671681.CrossRefGoogle Scholar
James, A. J., Vukasinovic, B., Smith, M. K. & Glezer, A. 2003 Vibration-induced drop atomization and bursting. J. Fluid Mech. 476, 128.CrossRefGoogle Scholar
John, K. & Thiele, U. 2010 Self-ratcheting Stokes drops driven by oblique vibrations. Phys. Rev. Lett. 104, 107801.CrossRefGoogle ScholarPubMed
Johnson, R. E. & Dettre, R. H. 1964 Contact angle hysteresis I. Study of an idealized rough surface. Adv. Chem. Ser. 43, 112135.CrossRefGoogle Scholar
Kelvin, Lord 1863 Dynamical problems regarding elastic spherodial shells and speroids of incompressible liquid. Phil. Trans. R. Soc. Lond. 153, 583616.Google Scholar
Lamb, M. A. 1881 On the oscillations of a viscous spheroid. Proc. Lond. Math. Soc. 13, 5170.CrossRefGoogle Scholar
López, P. G., Miksis, M. J. & Bankoff, S. G. 1997 Inertial effects on contact line instability in the coating of a dry inclined plate. Phys. Fluids 9 (8), 21172183.CrossRefGoogle Scholar
Lyubimov, D. V., Lyubimova, T. P. & Shklyaev, S. V. 2006 Behavior of a drop on an oscillating solid plate. Phys. Fluids 18, 012101.CrossRefGoogle Scholar
Meiron, T. S., Marmur, A. & Saguy, I. S. 2004 Contact angle measurement on rough surfaces. J. Colloid Interface Sci. 274, 637644.CrossRefGoogle ScholarPubMed
Mettu, S. & Chaudhury, M. K. 2010 Stochastic relaxation of the contact line of a water drop on a solid substrate subjected to white noise vibration: roles of hysteresis. Langmuir 26 (11), 81318140.CrossRefGoogle ScholarPubMed
Mettu, S. & Chaudhury, M. K. 2011 Motion of liquid drops on surfaces induced by asymmetric vibration: role of contact angle hysteresis. Langmuir 27, 1032710333.CrossRefGoogle ScholarPubMed
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2004 Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur. Phys. J. E 14, 395404.CrossRefGoogle ScholarPubMed
Noblin, X., Kofman, R. & Celestini, F. 2009 Ratchetlike motion of a shaken drop. Phys. Rev. Lett. 102, 194504.CrossRefGoogle ScholarPubMed
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.Google Scholar
Savva, N. & Kalliadasis, S. 2009 Two-dimensional droplet spreading over topographical substrates. Phys. Fluids 21, 092102.CrossRefGoogle Scholar
Savva, N. & Kalliadasis, S. 2011 Dynamics of moving contact lines: A comparison between slip and precursor film models. Europhys. Lett. 94, 64004.CrossRefGoogle Scholar
Savva, N. & Kalliadasis, S. 2012 Influence of gravity on the spreading of two-dimensional droplets over topographical substrates. J. Engng Maths 73, 316.CrossRefGoogle Scholar
Savva, N. & Kalliadasis, S. 2013 Droplet motion on inclined heterogeneous substrates. J. Fluid Mech. 725, 462491.CrossRefGoogle Scholar
Savva, N., Kalliadasis, S. & Pavliotis, G. A. 2010 Two-dimensional droplet spreading over random topographical substrates. Phys. Rev. Lett. 104, 084501.CrossRefGoogle ScholarPubMed
Savva, N., Pavliotis, G. A. & Kalliadasis, S. 2011a Contact lines over random topographical substrates. Part 1. Statics. J. Fluid Mech. 672, 358383.CrossRefGoogle Scholar
Savva, N., Pavliotis, G. A. & Kalliadasis, S. 2011b Contact lines over random topographical substrates. Part 2. Dynamics. J. Fluid Mech. 672, 384410.CrossRefGoogle Scholar
Sibley, D. N., Nold, A., Savva, N. & Kalliadasis, S. 2013a The contact line behaviour of solid–liquid–gas diffuse-interface models. Phys. Fluids 25, 092111.CrossRefGoogle Scholar
Sibley, D. N., Nold, A., Savva, N. & Kalliadasis, S. 2013b On the moving contact line singularity: Asymptotics of a diffuse-interface model. Eur. Phys. J. E 36, 26.CrossRefGoogle ScholarPubMed
Sibley, D. N., Savva, N. & Kalliadasis, S. 2012 Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system. Phys. Fluids 24, 082105.CrossRefGoogle Scholar
Smith, T. & Lindberg, G. 1978 Effect of acoustic energy on contact angle measurements. J. Colloid Interface Sci. 66 (2), 363366.CrossRefGoogle Scholar
Strani, M. & Sabetta, F. 1984 Free vibrations of a drop in partial contact with solid support. J. Fluid Mech. 141, 233247.CrossRefGoogle Scholar
Strani, M. & Sabetta, F. 1988 Viscous oscillations of a supported drop in an immiscible fluid. J. Fluid Mech. 189, 397421.CrossRefGoogle Scholar
Thiele, U. & John, K. 2010 Transport of free surface liquid films and drops by external ratchets and self-ratcheting mechanisms. Chem. Phys. 375, 578586.CrossRefGoogle Scholar
Vejrazka, J., Vobecka, L. & Tihon, J. 2013 Linear oscillations of a supported bubble or drop. Phys. Fluids 25, 062102.CrossRefGoogle Scholar
Vellingiri, R., Savva, N. & Kalliadasis, S. 2011 Droplet spreading on chemically heterogeneous substrates. Phys. Rev. E 84, 036305.CrossRefGoogle ScholarPubMed
Vukasinovic, B., Smith, M. K. & Glezer, A. 2007 Dynamics of a sessile drop in forced vibration. J. Fluid Mech. 587, 395423.CrossRefGoogle Scholar
Wilson, S. K., Hunt, R. & Duffy, B. R. 2000 The rate of spreading in spin coating. J. Fluid Mech. 413, 6588.CrossRefGoogle Scholar