Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T13:57:27.427Z Has data issue: false hasContentIssue false

Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction

Published online by Cambridge University Press:  11 October 2018

Xin Huang
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
David Estruch-Samper*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
*
Email address for correspondence: [email protected]

Abstract

High-speed turbulent boundary-layer separation can lead to severe wall-pressure fluctuations, often extending over a swept shock region. Having noted the shear layer’s influence within axisymmetric step flows, tests go on to experimentally assess the unsteadiness of a canonical swept separation, caused by a slanted $90^{\circ }$-step discontinuity (with varying azimuthal height) over an axisymmetric turbulent boundary layer. Results document an increase in shock pulsation frequency along the swept separation region ($\unicode[STIX]{x1D6EC}\leqslant 30^{\circ }$ sweep angles) – whereby the recirculation enables downstream feedback via the reverse flow – as the local streamwise separation length is reduced. A link between the spanwise variation in the separation shock’s low-frequency instability and the downstream mass ejection rate, as large shear-layer eddies leave the bubble, is sustained. The local entrainment-recharge dynamics of swept separation are thereby duly evaluated.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, L., Larchevêque, L. & Dupont, P. 2015 Mechanism of shock unsteadiness in separated shock/boundary-layer interactions. Phys. Fluids 27, 126103.Google Scholar
Babinsky, H. & Harvey, J. K. 2011 Shock Wave–Boundary-Layer Interactions, Cambridge Aerospace Series. Cambridge University Press.Google Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structures in turbulent mixing layers. J. Fluid Mech. 64, 775781.Google Scholar
Brusniak, L. & Dolling, D. S. 1994 Physics of unsteady blunt-fin-induced shock wave/turbulent boundary layer interactions. J. Fluid Mech. 273, 375409.Google Scholar
Chandola, G., Huang, X. & Estruch-Samper, D. 2017 Highly separated axisymmetric step shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 828, 236270.Google Scholar
Clemens, N. T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46, 469492.Google Scholar
Délery, J. & Marvin, J. G. 1986 Shock wave/boundary layer interactions. AGARDograph 280, 1216.Google Scholar
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.Google Scholar
Dupont, P., Haddad, C. & Debiève, J. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.Google Scholar
Dussauge, J. P. & Piponniau, S. 2008 Shock/boundary-layer interactions possible sources of unsteadiness. J. Fluids Struct. 24, 11661175.Google Scholar
Erengil, M. E. & Dolling, D. S. 1993 Effects of sweepback on unsteady separation in Mach 5 compression ramp interactions. AIAA J. 31 (2), 302311.Google Scholar
Estruch-Samper, D. & Chandola, G. 2018 Separated shear layer effect on shock-wave/turbulent-boundary-layer interaction unsteadiness. J. Fluid Mech. 848, 154192.Google Scholar
Gaitonde, D. V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aeronaut. Sci. 72, 8099.Google Scholar
Guiho, F., Alizard, F. & Robinet, J. C. 2016 Instabilities in oblique shock wave/laminar boundary-layer interactions. J. Fluid Mech. 789, 135.Google Scholar
Humble, R. A., Scarano, F. & van Oudheusden, B. W. 2009 Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech. 635, 4774.Google Scholar
Kubota, H. & Stollery, J. 1982 An experimental study of the interaction between a glancing shock wave and a turbulent boundary layer. J. Fluid Mech. 116, 431458.Google Scholar
Laderman, A. J. 1980 Adverse pressure gradient effects on supersonic boundary-layer turbulence. AIAA J. 18, 11861195.Google Scholar
Morajkar, R. R., Klomparens, R. L., Eagle, W. E., Driscoll, J. F. & Gamba, M. 2016 Relationship between intermittent separation and vortex structures in a three-dimensional shock/boundary-layer interaction. AIAA J. 54 (6), 18621880.Google Scholar
Panaras, A. G. 1996 Review of the physics of swept-shock/boundary layer interactions. Prog. Aerosp. Sci. 32, 173244.Google Scholar
Panaras, A. G. 1997 The effect of the structure of swept-shock-wave/turbulent-boundary-layer interactions on turbulence modelling. J. Fluid Mech. 338, 203230.Google Scholar
Papamoschou, D. 1995 Evidence of shocklets in a counterflow supersonic shear layer. Phys. Fluids 7, 233235.Google Scholar
Pasquariello, V., Hickel, S. & Adams, N. A. 2017 Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number. J. Fluid Mech. 823, 617657.Google Scholar
Piponniau, S., Dussauge, J. P., Debiève, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.Google Scholar
Poggie, J. & Leger, T. 2015 Large-scale unsteadiness in a compressible, turbulent reattaching shear layer. Exp. Fluids 56 (205), 112.Google Scholar
Priebe, S., Tu, J. H., Rowley, C. W. & Martin, M. P. 2016 Low-frequency dynamics in a shock-induced separated flow. J. Fluid Mech. 807, 441477.Google Scholar
Sansica, A., Sandham, N. D. & Hu, Z. 2016 Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble. J. Fluid Mech. 798, 526.Google Scholar
Souverein, L. J., Dupont, P., Debiève, J. F., Dussauge, J. P., van Oudheusden, B. W. & Scarano, F. 2010 Effect of interaction strength on unsteadiness in turbulent shock-wave-induced separations. AIAA J. 48 (7), 14801493.Google Scholar
Touber, E. & Sandham, N. D. 2011 Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417465.Google Scholar
Vanstone, L., Musta, M. N., Seckin, S. & Clemens, N. T. 2018 Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2. J. Fluid Mech. 841, 127.Google Scholar