Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T22:04:59.586Z Has data issue: false hasContentIssue false

Low-frequency sound radiated by a nonlinearly modulated wavepacket of helical modes on a subsonic circular jet

Published online by Cambridge University Press:  23 September 2009

XUESONG WU*
Affiliation:
Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK Department of Mechanics, Tianjin University, Tianjin 300072, People's Republic of China
PATRICK HUERRE
Affiliation:
Laboratoire d'Hydrodynamique (LadHyX) CNRS-Ecole Polytechnique, F-91128 Palaiseau, France
*
Email address for correspondence: [email protected]

Abstract

A possible fundamental physical mechanism by which instability modes generate sound waves in subsonic jets is presented in the present paper. It involves a wavepacket of a pair of helical instability modes with nearly the same frequencies but opposite azimuthal wavenumbers. As the wavepacket undergoes simultaneous spatial–temporal development in a circular jet, the mutual interaction between the helical modes generates a strong three-dimensional, slowly modulating ‘mean-flow distortion’. It is demonstrated that this ‘mean field’ radiates sound waves to the far field. The emitted sound is of very low frequency, with characteristic time and length scales being comparable with those of the envelope of the wavepacket, which acts as a non-compact source. A matched-asymptotic-expansion approach is used to determine, in a self-consistent manner, the acoustic field in terms of the envelope of the wavepacket and a transfer factor characterizing the refraction effect of the background base flow. For realistic jet spreading rates, the nonlinear development of the wavepacket is found to be influenced simultaneously by non-parallelism and non-equilibrium effects, and so a composite modulation equation including both effects is constructed in order to describe the entire growth–attenuation–decay cycle. Parametric studies pertaining to relevant experimental conditions indicate that the acoustic field is characterized by a single-lobed directivity pattern beamed at an angle about 45°–60° to the jet axis and a broadband spectrum centred at a Strouhal number St ≈ 0.07–0.2. As the nonlinear effect increases, the radiation becomes more efficient and the noise spectrum broadens, but the gross features of the acoustic field remain robust, and are broadly in agreement with experimental observations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahuja, K. K., Lepicovsky, J., Tam, C. K. W., Morris, P. J. & Burrin, R. H. (Lockhead-Georgia Co.) 1982 Tone-excited jet: theory and experiments. NASA-CR-3538. National Aeronautics and Space Administration.Google Scholar
Akylas, T. R. & Toplosky, N. 1986 The sound field of a Tollmien–Schlichting wave. Phys. Fluids 29 (3), 685689.CrossRefGoogle Scholar
Arndt, R. E. A., Long, D. F. & Glauser, M. N. 1997 The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J. Fluid Mech. 340, 133.CrossRefGoogle Scholar
Balsa, T. F. 1975 Fluid shielding of low frequency convected sources by arbitrary jets. J. Fluid Mech. 70, 1736.CrossRefGoogle Scholar
Bechert, D. W. & Pfizenmaier, E. 1975 On the amplification of broadband jet noise by a pure tone excitation. J. Sound Vib. 43, 581587.CrossRefGoogle Scholar
Bechert, D. W. & Pfizenmaier, E. 1977 Amplification of jet noise by a higher-mode acoustical excitation. AIAA J. 15, 12681271.CrossRefGoogle Scholar
Bishop, K. A., Ffowcs Williams, J. E. & Smith, W. 1971 On the noise sources of the unsuppressed high-speed jet. J. Fluid Mech. 50, 2131.CrossRefGoogle Scholar
Bogey, C., Barre, S., Fleury, V., Bailly, C. & Juve, D. 2007 Experimental study of the spectral properties of near-field and far-field jet noise. Intl J. Aeroacoust. 6 (2), 7392.CrossRefGoogle Scholar
Bradshaw, P., Ferriss, D. H. & Johnson, R. F. 1964 Turbulence in the noise-producing region of a circular jet. J. Fluid Mech. 19, 591624.CrossRefGoogle Scholar
Bridges, J. & Hussain, F. 1992 Direct evaluation of aeroacoustic theory in a jet. J. Fluid Mech. 240, 469501.CrossRefGoogle Scholar
Chimonas, G. & Grant, J. R. 1984 Shear excitation of atmospheric gravity waves: upscale scattering from Kelvin–Helmholtz waves. J. Atmos. Sci. 41, 22782288.2.0.CO;2>CrossRefGoogle Scholar
Chan, Y. Y. 1974 Spiral waves in turbulent jets. Phys. Fluids 17, 4653.CrossRefGoogle Scholar
Churilov, S. M. & Shukhman, I. G. 1994 Nonlinear spatial evolution of helical disturbances to an axial jet. J. Fluid Mech. 281, 371402.CrossRefGoogle Scholar
Citriniti, J. H. & George, W. K. 2000 Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J. Fluid Mech. 418, 137166.CrossRefGoogle Scholar
Corke, T. C. & Kusek, S. M. 1993 Resonance in axisymmetric jets with controlled helical-mode input. J. Fluid Mech. 249, 07336.CrossRefGoogle Scholar
Crighton, D. G. & Gaster, M. 1976 Stability of slowly divergent jet flow. J. Fluid Mech. 77, 397413.CrossRefGoogle Scholar
Crighton, D. G. & Huerre, P. 1990 Shear-layer pressure fluctuations and superdirective acoustic sources. J. Fluid Mech. 220, 355368.CrossRefGoogle Scholar
Cohen, J. & Wygnanski, I. 1987 a The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191219.CrossRefGoogle Scholar
Cohen, J. & Wygnanski, I. 1987 b The evolution of instabilities in the axisymmetric jet. Part 2. The flow resulting from the interaction between two waves. J. Fluid Mech. 176, 221235.CrossRefGoogle Scholar
Cowley, S. J. & Wu, X. 1994 Asymptotic approaches to transition modelling. In Progress in transition modelling, AGARD Rep. 793. Advisory Group for Aerospace Research and Development.Google Scholar
Crow, S. C. 1972 Acoustic gain of a turbulent jet. Paper IE.6. In American Physical Society Meeting, University of Colorado, Boulder CO.Google Scholar
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.CrossRefGoogle Scholar
Freund, J. B. 2001 Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277305.CrossRefGoogle Scholar
Fritts, D. C. 1982 Shear excitation of atmospheric gravity waves. J. Atmos. Sci. 39, 19361952.2.0.CO;2>CrossRefGoogle Scholar
Gamard, S., Jung, D. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region. J. Fluid Mech. 514, 205230.CrossRefGoogle Scholar
Goldstein, M. E. 1975 The low-frequency sound from multipole sources in axisymmetric shear flows, with applications to jet noise. J. Fluid Mech. 70, 595604.CrossRefGoogle Scholar
Goldstein, M. E. 1976 The low-frequency sound from multipole sources in axisymmetric shear flows. Part 2. J. Fluid Mech. 75, 1728.CrossRefGoogle Scholar
Goldstein, M. E. 1984 Sound generation and upstream influence due to instability wave interacting with non-uniform mean flows. J. Fluid Mech. 149, 161177.CrossRefGoogle Scholar
Goldstein, M. E. 1995 The role of nonlinear critical layers in boundary-layer transition. Phil. Trans. R. Soc. Lond. A 352, 425442.Google Scholar
Goldstein, M. E. & Choi, S.-W. 1989 Nonlinear evolution of interacting oblique waves on two-dimensional shear layers. J. Fluid Mech. 207, 97120.CrossRefGoogle Scholar
Goldstein, M. E. & Leib, S. J. 1989 Nonlinear evolution of oblique waves on compressible shear layers. J. Fluid Mech. 207, 7396.CrossRefGoogle Scholar
Goldstein, M. E. & Leib, S. J. 2008 The aeroacoustics of slowly diverging supersonic jets. J. Fluid Mech. 600, 291337.CrossRefGoogle Scholar
Haj-Hariri, H. & Akylas, T. R. 1986 Sound radiation by instability wavepackets in a boundary layer. Stud. Appl. Math. 75, 5776.CrossRefGoogle Scholar
Hileman, J. I., Thurow, B. S., Caraballo, E. J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Hasan, M. A. Z. 1985 Turbulence suppression in free turbulent shear flows under controlled excitation. Part 2. Jet-noise reduction. J. Fluid Mech. 150, 159168.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1980 Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics. J. Fluid Mech. 101, 493544.CrossRefGoogle Scholar
Iqbal, M. O. & Thomas, F. O. 2007 Coherent structure in a turbulent jet via a vector implementation of the proper orthogonal decomposition. J. Fluid Mech. 571, 281326.CrossRefGoogle Scholar
Jung, D., Gamard, S. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J. Fluid Mech. 514, 173204.CrossRefGoogle Scholar
Khavaran, A. & Bridges, J. 2004 Modeling of turbulence generated noise in jet. AIAA Paper 2004-2983. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Kibens, V. 1980 Discrete noise spectrum generated by an acoustically excited jet. AIAA J. 18, 434441.CrossRefGoogle Scholar
Laufer, J. & Yen, T. 1983 Noise generation by a low-Mach-number jet. J. Fluid Mech. 134, 131.CrossRefGoogle Scholar
Leib, S. J. 1991 Nonlinear evolution of subsonic and supersonic disturbances on a compressible free shear layer. J. Fluid Mech. 224, 551578.CrossRefGoogle Scholar
Leib, S. J. & Lee, S. S. 1995 Nonlinear evolution of a pair of oblique instability waves in a supersonic boundary layer. J. Fluid Mech. 282, 339371.CrossRefGoogle Scholar
Long, T. A. & Petersen, R. A. 1992 Controlled interactions in a forced axisymmetric jet. Part 1. The distortion of the mean flow. J. Fluid Mech. 235, 3755.CrossRefGoogle Scholar
Lush, P. A. 1971 Measurements of subsonic jet noise and comparison with theory. J. Fluid Mech. 46, 477500.CrossRefGoogle Scholar
Michalke, A. 1971 Instabilitat eines kompressiblen runden Freistrahls unter Beruchksichtigung des Einflusses der Strahlgrenz-schichtdicke. Z. Flugwiss. 19, 319.Google Scholar
Mitchell, B. E., Lele, S. K. & Moin, P. 1999 Direct computation of the sound generated by vortex pairing in an axisymmetric jet. J. Fluid Mech. 383, 113142.CrossRefGoogle Scholar
Mollo-Christensen, E. L., Kolpin, M. A. & Martuccelli, J. R. 1964 Experiments on jet flows and jet noise far-field spectra and directivity patterns. J. Fluid Mech. 18, 285301.CrossRefGoogle Scholar
Moore, C. J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80, 321367.CrossRefGoogle Scholar
Panda, J. 2007 Experimental investigation of turbulent density fluctuations and noise generation from heated jets. J. Fluid Mech. 591, 7396.CrossRefGoogle Scholar
Panda, J. & Seasholtz, R. G. 2002 Experimental investigation of density fluctuations in high-speed jets and correlation with generated noise. J. Fluid Mech. 450, 97130.CrossRefGoogle Scholar
Panda, J., Seasholtz, R. G. & Elam, K. A. 2005 Investigation of noise sources in high-speed jets via correlation measurements. J. Fluid Mech. 537, 349385.CrossRefGoogle Scholar
Sandham, N. D., Morfey, C. L. & Hu, Z. W. 2006 Nonlinear mechanisms of sound generation in a perturbed parallel jet flow. J. Fluid Mech. 565, 123.CrossRefGoogle Scholar
Sandham, N. D. & Salgado, A. 2008 Nonlinear interaction model of subsonic jet noise. Phil. Trans. R. Soc. Lond. 366 (1876), 27452760.Google ScholarPubMed
Scinocca, J. F. & Ford, R. 2000 The nonlinear forcing of large-scale internal gravity waves by stratified shear instability. J. Atmos. Sci. 57, 653672.2.0.CO;2>CrossRefGoogle Scholar
Strange, P. J. R. & Crighton, D. G. 1983 Spinning modes on axisymmetric jets. Part 1. J. Fluid Mech. 134, 231245.CrossRefGoogle Scholar
Stromberg, J. L., McLaughlin, D. K. & Troutt, T. R. 1980 Flow field and acoustic properties of a Mach number 0.9 jet at low Reynolds number. J. Sound Vib. 72 (2), 159176.CrossRefGoogle Scholar
Suzuki, T. & Colonius, T. 2006 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197226.CrossRefGoogle Scholar
Tam, C. K. W. 1971 Directional acoustic radiation from a supersonic jet generated by shear layer instability. J. Fluid Mech. 46, 757768.CrossRefGoogle Scholar
Tam, C. K. W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 1743.CrossRefGoogle Scholar
Tam, C. K. W. & Burton, D. E. 1984 Sound generated by instability waves of supersonic flow. Part 2. Axisymmetric jets. J. Fluid Mech. 138, 273295.CrossRefGoogle Scholar
Tam, C. K. W. & Morris, P. J. 1980 The radiation of sound by the instability waves of a compressible plane turbulent shear layer. J. Fluid Mech. 98, 349381.CrossRefGoogle Scholar
Wu, X. 2005 Mach wave radiation of nonlinearly evolving supersonic instability modes in shear layers. J. Fluid Mech. 523, 121159.CrossRefGoogle Scholar
Wu, X. & Hogg, L. 2006 Acoustic radiation of Tollmien–Schlichting waves as they undergo rapid distortion. J. Fluid Mech. 550, 307347.CrossRefGoogle Scholar
Wu, X., Lee, S. S. & Cowley, S. J. 1993 On the weakly nonlinear three-dimensional instability of shear flows to pairs of oblique waves: the Stokes layer as a paradigm. J. Fluid Mech. 253, 681721.CrossRefGoogle Scholar
Zaman, K. B. M. Q. 1985 Far-field noise of a subsonic jet under controlled excitation. J. Fluid Mech. 152, 83111.CrossRefGoogle Scholar
Zaman, K. B. M. Q. 1986 Flow field and near and far sound field of a subsonic jet. J. Sound Vib. 106, 116.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101, 449491.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1984 Natural large-scale structures in the axisymmetric mixing layer. J. Fluid Mech. 138, 325351.CrossRefGoogle Scholar