Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T00:49:09.875Z Has data issue: false hasContentIssue false

The log behaviour of the Reynolds shear stress in accelerating turbulent boundary layers

Published online by Cambridge University Press:  19 June 2015

Guillermo Araya*
Affiliation:
Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
Luciano Castillo
Affiliation:
Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
Fazle Hussain
Affiliation:
Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulation of highly accelerated turbulent boundary layers (TBLs) reveals that the Reynolds shear stress, $\overline{u^{\prime }v^{\prime }}^{+}$, monotonically decreases downstream and exhibits a logarithmic behaviour (e.g. $-\overline{u^{\prime }v^{\prime }}^{+}=-(1/A_{uv})\ln y^{+}+B_{uv}$) in the mesolayer region (e.g. $50\leqslant y^{+}\leqslant 170$). The thickness of the log layer of $\overline{u^{\prime }v^{\prime }}^{+}$ increases with the streamwise distance and with the pressure gradient strength, extending over a large portion of the TBL thickness (up to 55 %). Simulations reveal that $V^{+}\,\partial U^{+}/\partial y^{+}\sim 1/y^{+}\sim \partial \overline{u^{\prime }v^{\prime }}^{+}/\partial y^{+}$, resulting in a logarithmic $\overline{u^{\prime }v^{\prime }}^{+}$ profile. Also, $V^{+}\sim -y^{+}$ is no longer negligible as in zero-pressure-gradient (ZPG) flows. Other experimental/numerical data at similar favourable-pressure-gradient (FPG) strengths also show the presence of a log region in $\overline{u^{\prime }v^{\prime }}^{+}$. This log region in $\overline{u^{\prime }v^{\prime }}^{+}$ is larger in sink flows than in other spatially developing FPG flows. The latter flows exhibit the presence of a small power-law region in $\overline{u^{\prime }v^{\prime }}^{+}$, which is non-existent in sink flows.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araya, G., Jansen, K., Meneveau, C. & Castillo, L. 2011 A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially evolving flows. J. Fluid Mech. 670, 518605.CrossRefGoogle Scholar
Blackwelder, R. F. & Kovasznay, L. S. G. 1972 Large-scale motion of a turbulent boundary layer during relaminarization. J. Fluid Mech. 53, 6183.CrossRefGoogle Scholar
Bourassa, C. & Thomas, F. O. 2009 An experimental investigation of a highly accelerated turbulent boundary layer. J. Fluid Mech. 634, 359404.CrossRefGoogle Scholar
Cal, R. & Castillo, L. 2008 Similarity analysis of favorable pressure gradient turbulent boundary layers with eventual quasilaminarization. Phys. Fluids 20, 105106.CrossRefGoogle Scholar
Dixit, S. A. & Ramesh, O. N. 2010 Large-scale structures in turbulent and reverse-transitional sink flow boundary layers. J. Fluid Mech. 649, 233273.CrossRefGoogle Scholar
George, W. K. & Castillo, L. 1997 Zero-pressure-gradient turbulent boundary layer. Appl. Mech. Rev. 50, 689729.CrossRefGoogle Scholar
Jones, W. P. & Launder, B. E. 1972 Some properties of sink-flow turbulent boundary layers. J. Fluid Mech. 56, 337351.CrossRefGoogle Scholar
Jones, M. B., Marusic, I. & Perry, A. E. 2001 Evolution and structure of sink-flow turbulent boundary layers. J. Fluid Mech. 428, 127.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Launder, B. E. 1964 Laminarization of the turbulent boundary layer in a severe acceleration. Trans. ASME: J. Appl. Mech. 31 (4), 707708.CrossRefGoogle Scholar
Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233258.CrossRefGoogle Scholar
Narasimha, R. 1983 Relaminarization – magnetohydrodynamic and otherwise. In AIAA Progress in Astronautics and Aeronautics, vol. 84, pp. 3052. AIAA.Google Scholar
Narasimha, R. & Sreenivasan, K. R. 1973 Relaminarization in highly accelerated turbulent boundary layers. J. Fluid Mech. 61, 417447.CrossRefGoogle Scholar
Narasimha, R. & Sreenivasan, K. R. 1979 Relaminarization of fluid flows. Adv. Appl. Mech. 19, 221309.CrossRefGoogle Scholar
Patel, V. C. 1965 Calibration of the Preston tube and limitation on its use in pressure gradients. J. Fluid Mech. 23, 185208.CrossRefGoogle Scholar
Perry, A. E., Henbest, S. M. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.CrossRefGoogle Scholar
Piomelli, U. & Yuan, J. 2013 Numerical simulations of spatially developing, accelerating boundary layers. Phys. Fluids 25, 101304.CrossRefGoogle Scholar
Rosenhead, L.(Ed.) 1963 Laminar Boundary Layers. Oxford University Press.Google Scholar
Schraub, A. & Kline, S. J.1965 A study of the structure of the turbulent boundary layer with and without longitudinal pressure gradients. Report MD-12. Thermosciences Division, Mechanical Engineering Department, University of Stanford.Google Scholar
Spalart, P. 1986 Numerical study of sink-flow boundary layers. J. Fluid Mech. 172, 307328.CrossRefGoogle Scholar
Sreenivasan, K. R. 1982 Laminarescent, relaminarizing and retransitional flows. Acta Mechanica 44, 148.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Warnack, D. & Fernholz, A. 1998 The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent boundary layer. Part 2. The boundary layer with relaminarization. J. Fluid Mech. 359, 357381.CrossRefGoogle Scholar