Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T22:12:43.526Z Has data issue: false hasContentIssue false

Localized edge states nucleate turbulence in extended plane Couette cells

Published online by Cambridge University Press:  08 March 2010

TOBIAS M. SCHNEIDER
Affiliation:
Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
DANIEL MARINC
Affiliation:
Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany Aerodynamisches Institut, RWTH Aachen, D-52062 Aachen, Germany
BRUNO ECKHARDT*
Affiliation:
Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany Department of Mechanical Engineering, TU Delft, 2928 CA Delft, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

We study the turbulence transition of plane Couette flow in large domains where localized perturbations are observed to generate growing turbulent spots. Extending previous studies on the boundary between laminar and turbulent dynamics we determine invariant structures intermediate between laminar and turbulent flow. In wide but short domains we find states that are localized in spanwise direction, and in wide and long domains the states are also localized in downstream direction. These localized states act as critical nuclei for the transition to turbulence in spatially extended domains.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkley, D. & Tuckerman, L. S. 2005 Computational study of turbulent laminar patterns in Couette flow. Phys. Rev. Lett. 94, 014502.Google Scholar
Becker, R. 1966 Theorie der Wärme, 18th edn. Springer.Google Scholar
Boberg, L. & Brosa, U. 1988 Onset of turbulence in a pipe. Z. Naturforsch. 43a, 697726.CrossRefGoogle Scholar
Bottin, S., Dauchot, O. & Daviaud, F. 1997 Intermittency in a locally forced plane Couette flow. Phys. Rev. Lett. 79, 43774380.Google Scholar
Bottin, S., Daviaud, F., Manneville, P. & Dauchot, O. 1998 Discontinuous transition to spatiotemporal intermittency in plane Couette flow. Europhys. Lett. 43, 171176.Google Scholar
Burke, J. & Knobloch, E. 2007 Homoclinic snaking: structure and stability. Chaos 17, 037102.CrossRefGoogle ScholarPubMed
Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. 1990. Spectral Methods in Fluid Dynamics, 2nd revised edn. Springer.Google Scholar
Clever, R. M. & Busse, F. H. 1997 Tertiary and quaternary solutions for plane Couette flow. J. Fluid Mech. 344, 137153.Google Scholar
Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-mass-flux pipe flow. J. Fluid Mech. 289, 83114.CrossRefGoogle Scholar
Dauchot, O. & Daviaud, F. 1995 Finite amplitude perturbation and spots growth mechanism in plane Couette flow. Phys. Fluids 7, 335343.CrossRefGoogle Scholar
Dawes, J. H. P. 2009 Modulated and localized states in a finite domain. SIAM J. Appl. Dyn. Syst. 8, 909930.Google Scholar
Duguet, Y., Schlatter, P. & Henningson, D. S. 2009 Localized edge states in plane Couette flow. Phys. Fluids 21, 111701.CrossRefGoogle Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.CrossRefGoogle Scholar
Eckhardt, B., Faisst, H., Schmiegel, A. & Schneider, T. M. 2008 Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil. Trans. R. Soc. Lond. A 366, 12971315.Google ScholarPubMed
Eckhardt, B., Faisst, H., Schmiegel, A. & Schumacher, J. 2002 Turbulence transition in shear flows. In Advances in Turbulence IX (ed. Castro, I. P., Hancock, P. E. & Thomas, T. G.), pp. 701708. CIMNE.Google Scholar
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.CrossRefGoogle Scholar
Ehrenstein, U., Nagata, M., & Rincon, F. 2009 Two-dimensional nonlinear plane Poiseuille-Couette flow homotopy revisited. Phys. Fluids 20, 064103.CrossRefGoogle Scholar
Emmons, H. W. 1951 The laminar-turbulent transition in a boundary layer. J. Aeronaut. Sci. 18, 490498.CrossRefGoogle Scholar
Grossmann, S. 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72 (2), 603618.CrossRefGoogle Scholar
Hof, B., Juel, A. & Mullin, T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91, 244502.CrossRefGoogle Scholar
Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B 2006 Finite lifetime of turbulence in shear flows. Nature 443, 6064.CrossRefGoogle ScholarPubMed
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.Google Scholar
Knobloch, E. 2008 Spatially localized structures in dissipative systems: open problems. Nonlinearity 21, T45–T60.CrossRefGoogle Scholar
Koschmieder, E. L. 1993 Bénard Cells and Taylor Vortices. Cambridge University Press.Google Scholar
Landau, L. D. 1944 On the problem of turbulence. C.R. Acad. Sci. USSR 44, 311314.Google Scholar
Lundbladh, A. & Johansson, A.V. 1991 Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech. 229, 499516.CrossRefGoogle Scholar
Manneville, P. 2009 Spatiotemporal perspective on the decay of turbulence in wall-bounded flows. Phys. Rev. E 79, 025301(R).CrossRefGoogle ScholarPubMed
Marinc, D. 2008 Localized edge-states in plane Couette flow. Diploma thesis, Philipps-Universität Marburg, Marburg.Google Scholar
Marinc, D., Schneider, T. M. & Eckhardt, B. 2009 Edge states and the transition to turbulence in shear flows. In Laminar-turbulent transition (ed. Schlatter, P. & Henningson, D. S.), pp. 253258, Springer.Google Scholar
Mellibovsky, F., Meseguer, A., Schneider, T. M. & Eckhardt, B. 2009 Transition in localized pipe flow turbulence. Phys. Rev. Lett. 103, 054502.CrossRefGoogle ScholarPubMed
Meseguer, A. 2003 Streak breakdown instability in pipe Poiseuille flow. Phys. Fluids 15, 12031213.Google Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.Google Scholar
Peixinho, J. & Mullin, T. 2007 Finite-amplitude thresholds for transition in pipe flow. J. Fluid Mech. 582, 169178.CrossRefGoogle Scholar
Pomeau, Y. 1986 Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23, 311.Google Scholar
Prigent, A., Grégoire, G., Chaté, H., Dauchot, O. & van Saarlos, W. 2002 Large-scale finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89, 014501.Google Scholar
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 174, 935982 + 3 plates.Google Scholar
Schmid, P. J. & Henningson, D. S. 1999 Stability and Transition of Shear Flows. Springer.Google Scholar
Schmiegel, A. & Eckhardt, B. 1997 Fractal stability border in plane Couette flow. Phys. Rev. Lett. 79, 52505253.CrossRefGoogle Scholar
Schneider, T. M. & Eckhardt, B. 2006 Edge of chaos in pipe flow. Chaos 16, 041103.CrossRefGoogle ScholarPubMed
Schneider, T. M. & Eckhardt, B. 2009 Edge states intermediate between laminar and turbulent dynamics in pipe flow. Phil. Trans. R. Soc. Lond. A 367, 577587.Google ScholarPubMed
Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.CrossRefGoogle ScholarPubMed
Schneider, T. M., Gibson, J. F., Lagha, M., deLillo, F. & Eckhardt, B. 2008 Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301.Google Scholar
Schumacher, J. & Eckhardt, B. 2001 Evolution of turbulent spots in a parallel shear flow. Phys. Rev. E 63, 046307.Google Scholar
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.CrossRefGoogle Scholar
Tillmark, N. & Alfredsson, P. H. 1992 Experiments on transition in plane Couette flow. J. Fluid Mech. 235, 89102.Google Scholar
Vollmer, J., Schneider, T. M. & Eckhardt, B. 2009 Basin boundary, edge of chaos, and edge state in a two-dimensional model. New J. Phys. 11, 013040.CrossRefGoogle Scholar
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171534.Google Scholar
Wang, J., Gibson, J. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501.CrossRefGoogle ScholarPubMed
Willis, A. P. & Kerswell, R. R. 2009 Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarisation and localized edge states. J. Fluid Mech. 619, 213233.Google Scholar