Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T09:19:36.173Z Has data issue: false hasContentIssue false

Localized edge states in the asymptotic suction boundary layer

Published online by Cambridge University Press:  07 February 2013

T. Khapko*
Affiliation:
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
T. Kreilos
Affiliation:
Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
P. Schlatter
Affiliation:
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Y. Duguet
Affiliation:
LIMSI-CNRS, UPR 3251, Université Paris-Sud, F-91403, Orsay, France
B. Eckhardt
Affiliation:
Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany J. M. Burgerscentrum, Delft University of Technology, NL-2628 CD Delft, The Netherlands
D. S. Henningson
Affiliation:
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
*
Email address for correspondence: [email protected]

Abstract

The dynamics on the laminar–turbulent separatrix is investigated numerically for boundary-layer flows in the subcritical regime. Constant homogeneous suction is applied at the wall, resulting in a parallel asymptotic suction boundary layer (ASBL). When the numerical domain is sufficiently extended in the spanwise direction, the coherent structures found by edge tracking are invariably localized and their dynamics shows bursts that drive a remarkable regular or irregular spanwise dynamics. Depending on the parameters, the asymptotic dynamics on the edge can be either periodic in time or chaotic. A clear mechanism for the regeneration of streaks and streamwise vortices emerges in all cases and is investigated in detail.

Type
Rapids
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Fulachier, L., Krishnamoorthy, L. V., Benabid, T. & Anselmet, F. 1988 Influence of wall suction on the organized motion in a turbulent boundary layer. J. Fluid Mech. 190, 217240.Google Scholar
Biau, D. 2012 Laminar–turbulent separatrix in a boundary layer flow. Phys. Fluids 24, 034107.Google Scholar
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.CrossRefGoogle Scholar
Cherubini, S., De Palma, P., Robinet, J. C. & Bottaro, A. 2011 Edge states in a boundary layer. Phys. Fluids 23, 051705.Google Scholar
Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S. 2007 A pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07. KTH Mechanics, Stockholm, Sweden.Google Scholar
Duguet, Y., Schlatter, P. & Henningson, D. S. 2009 Localized edge states in plane Couette flow. Phys. Fluids 21, 111701.Google Scholar
Duguet, Y., Schlatter, P., Henningson, D. S. & Eckhardt, B. 2012 Self-sustained localized structures in a boundary-layer flow. Phys. Rev. Lett. 108, 044501.Google Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.Google Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2010 Slug genesis in cylindrical pipe flow. J. Fluid Mech. 663, 180208.CrossRefGoogle Scholar
Fransson, J. H. M. & Alfredsson, P. H. 2003 On the disturbance growth in an asymptotic suction boundary layer. J. Fluid Mech. 482, 5190.Google Scholar
Gibson, J. F. 2012 ChannelFlow: a spectral Navier–Stokes simulator in C++. Tech. Rep. University of New Hampshire, http://channelflow.org.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.Google Scholar
Henningson, D. S., Spalart, P. R. & Kim, J. 1987 Numerical simulations of turbulent spots in plane Poiseuille and boundary-layer flow. Phys. Fluids 30, 29142917.Google Scholar
Hocking, L. M. 1975 Non-linear instability of the asymptotic suction velocity profile. Q. J. Mech. Appl. Maths 28 (3), 341353.Google Scholar
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.Google Scholar
Jiménez, J., Kawahara, G., Simens, M. P., Nagata, M. & Shiba, M. 2005 Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids 17, 015105.Google Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.Google Scholar
Kreilos, T., Veble, G., Schneider, T. M. & Eckhardt, B. 2012 Edge states for the turbulence transition in the asymptotic suction boundary layer. J. Fluid Mech.  arXiv:1209.0593 (submitted).Google Scholar
Levin, O. & Henningson, D. S. 2007 Turbulent spots in the asymptotic suction boundary layer. J. Fluid Mech. 584, 397414.Google Scholar
Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech. 229, 499516.Google Scholar
Mariani, P., Spalart, P. R. & Kollmann, W. 1993 Direct simulation of a turbulent boundary layer with suction. In Near-Wall Turbulent Flows (ed. So, R. M. C., Speziale, C. G. & Launder, B. E.), pp. 347356. Elsevier Science.Google Scholar
Mellibovsky, F., Meseguer, A., Schneider, T. M. & Eckhardt, B. 2009 Transition in localized pipe flow turbulence. Phys. Rev. Lett. 103, 054502.CrossRefGoogle ScholarPubMed
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.Google Scholar
Schlatter, P., Brandt, L., De Lange, H. C. & Henningson, D. S. 2008 On streak breakdown in bypass transition. Phys. Fluids 20, 101505.Google Scholar
Schlatter, P. & Örlü, R. 2011 Turbulent asymptotic suction boundary layers studied by simulation. J. Phys.: Conf. Ser. 318, 022020.Google Scholar
Schlichting, H. 1987 Boundary-Layer Theory, 7th edn. McGraw-Hill.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.CrossRefGoogle ScholarPubMed
Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F. & Eckhardt, B. 2008 Laminar–turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301.Google Scholar
Schneider, T. M., Marinc, D. & Eckhardt, B. 2010 Localized edge states nucleate turbulence in extended plane Couette cells. J. Fluid Mech. 646, 441451.Google Scholar
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to ${R}_{\theta } = 1410$ . J. Fluid Mech. 187, 6198.Google Scholar
Spalart, P. R. & Yang, K. S. 1987 Numerical study of ribbon-induced transition in Blasius flow. J. Fluid Mech. 178, 345365.Google Scholar
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.Google Scholar

Khapko et al. supplementary movies

Three-dimensional visualisation of the left hopping edge state (L). Re = 500, box size (Lx,Ly,Lz)=(6π,15,50) (for details refer to figure 6 in the paper).

Download Khapko et al. supplementary movies(Video)
Video 9.7 MB

Khapko et al. supplementary movies

Three-dimensional visualisation of the left-right hopping edge state (LR). Re = 500, box size (Lx,Ly,Lz)=(6π,15,50) (for details refer to figure 6 in the paper).

Download Khapko et al. supplementary movies(Video)
Video 6.1 MB