Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T19:30:18.714Z Has data issue: false hasContentIssue false

Local scour around structures and the phenomenology of turbulence

Published online by Cambridge University Press:  14 August 2015

Costantino Manes*
Affiliation:
Faculty of Engineering and the Environment, University of Southampton, SouthamptonSO17 1BJ, UK
Maurizio Brocchini
Affiliation:
Dipartimento ICEA, Università Politecnica delle Marche, via Brecce Bianche 12, 60131 Ancona, Italy
*
Email address for correspondence: [email protected]

Abstract

The scaling of the scour depth of equilibrium at the base of a solid cylinder immersed within an erodible granular bed and impinged by a turbulent shear flow is investigated here, for the first time, by means of the phenomenological theory of turbulence. The proposed theory allows the derivation of a predictive formula that (i) includes all the relevant non-dimensional parameters controlling the process, and (ii) contrary to commonly employed empirical formulae, is free from scale issues. Theoretical predictions agree very well with experimental data, shed light on unresolved issues on the physics of the problem, and clarify the effects of various dimensionless parameters controlling the scouring process.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bombardelli, F. A. & Gioia, G. 2006 Scouring of granular beds by jet-driven axisymmetric turbulent cauldrons. Phys. Fluids 18, 088101.Google Scholar
Buffington, J. M. & Montgomery, D. R. 1997 A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 33 (8), 19932029.CrossRefGoogle Scholar
Chiew, Y. M.1984 Local scour at bridge piers. PhD thesis, Department of Civil Engineering, University of Auckland, Auckland, New Zealand.Google Scholar
Chow, V. T. 1996 Open Channel Hydraulics. McGraw-Hill.Google Scholar
Ettema, R.1980 Scour at bridge piers. Rep. 216. School of Engineering, The University of Auckland, Auckland, New Zealand.Google Scholar
Ettema, R., Constantinescu, G. & Melville, B.2011 Evaluation of bridge scour research: pier scour processes and predictions. NCHRP Rep. 175.Google Scholar
Ettema, R., Kirkil, G. & Muste, M. 2006 Similitude of large-scale turbulence in experiments on local scour at cylinders. J. Hydraul. Engng 132 (1), 3340.CrossRefGoogle Scholar
Ettema, R., Melville, B. W. & Barkdoll, B. 1998 Scale effect in pier-scour experiments. J. Hydraul. Engng 124 (6), 639642.Google Scholar
Ferguson, R. 2010 Time to abandon the Manning equation? Earth Surf. Proces. Landf. 35, 18731876.Google Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.Google Scholar
Gioia, G. & Bombardelli, F. A. 2002 Scaling and similarity in rough channel flows. Phys. Rev. Lett. 88 (1), 014501.Google Scholar
Gioia, G. & Bombardelli, F. A. 2005 Localized turbulent flows on scouring granular beds. Phys. Rev. Lett. 95 (1), 014501.Google Scholar
Gioia, G. & Chakraborty, P. 2006 Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys. Rev. Lett. 96 (4), 044502.Google Scholar
Knight, B. & Sirovich, L. 1990 Kolmogorov inertial range for inhomogeneous turbulent flows. Phys. Rev. Lett. 65 (11), 13561359.CrossRefGoogle ScholarPubMed
Kirkil, G., Constantinescu, G. & Ettema, R. 2008 Coherent structures in the flow field around a circular cylinder with scour hole. J. Hydraul. Engng 134 (5), 572587.Google Scholar
Kolmogorov, A. N. 1991 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. A 434, 913.Google Scholar
Kothyari, U. C., Hager, W. H. & Oliveto, G. 2007 Generalized approach for clear-water scour at bridge foundation elements. J. Hydraul. Engng 133 (11), 12291240.Google Scholar
Lança, R. M, Fael, C. S., Maia, R. J., Pego, J. P. & Cardoso, A. H. 2013 Clear-water scour at comparatively large cylindrical piers. J. Hydraul. Engng 139 (11), 11171125.Google Scholar
Lee, S. O. & Sturm, T. W. 2009 Effect of sediment size scaling on physical modeling of bridge scour. J. Hydraul. Engng 135 (10), 793802.CrossRefGoogle Scholar
Melville, B. 1984 Live-bed scour at bridge piers. J. Hydraul. Engng 110 (9), 12341247.Google Scholar
Melville, B. W. & Chiew, Y. M. 1999 Time scale for local scour at bridge piers. J. Hydraul. Engng 125 (1), 5965.Google Scholar
Melville, B. & Coleman, S. 2000 Bridge Scour. Water Resources Publications.Google Scholar
Moser, D. R. 1993 Kolmogorov inertial range spectra for inhomogeneous turbulence. Phys. Fluids 6 (2), 794801.Google Scholar
Qi, Z. X., Eames, I. & Johnson, E. R. 2014 Force acting on a square cylinder fixed in a free-surface channel flow. J. Fluid Mech. 756, 716727.Google Scholar
Ranga Raju, K. G., Rana, O. P. S., Asawa, G. L. & Pillai, A. S. N. 1983 Rational assessment of blockage effect in channel flow past smooth circular cylinders. J. Hydraul. Res. 21 (4), 289302.Google Scholar
Saddoughi, S. G. 1997 Local isotropy in complex turbulent boundary layers at high Reynolds number. J. Fluid Mech. 348, 201245.Google Scholar
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.Google Scholar
Sheppard, D. M. & Miller, W. Jr. 2006 Live-bed local pier scour experiments. J. Hydraul. Engng 132 (7), 635642.Google Scholar
Sheppard, D. M., Odeh, M. & Glasser, T. 2004 Large scale clear-water local pier scour experiments. J. Hydraul. Engng 130 (10), 957963.Google Scholar
Shields, A. 1936 Application of Similarity Principles and Turbulence Research to Bed-Load Movement. California Institute of Technology; translated from German.Google Scholar
Simarro, G., Teixeira, L. & Cardoso, A. H. 2007 Flow intensity parameter in pier scour experiments. J. Hydraul. Engng 133 (11), 12611264.Google Scholar
Unger, J. & Hager, W. H. 2007 Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp. Fluids 42, 119.Google Scholar
Yang, C. T. 1996 Sediment Transport: Theory and Practice. McGraw-Hill.Google Scholar
Yang, C. T. & Joseph, D. D. 2009 Virtual Nikuradse. J. Turbul. 10, 128.Google Scholar