Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T07:47:49.303Z Has data issue: false hasContentIssue false

Local isotropy and large structures in a heated turbulent jet

Published online by Cambridge University Press:  19 April 2006

K. R. Sreenivasan
Affiliation:
Department of Mechanics and Materials Science, The Johns Hopkins University, Baltimore, Maryland 21218
R. A. Antonia
Affiliation:
Department of Mechanical Engineering, University of Newcastle, New South Wales, 2308
D. Britz
Affiliation:
Department of Mechanical Engineering, University of Newcastle, New South Wales, 2308 Present address: Kemisk Institut, Aarhus Universitet, 8000 Aarhus, Denmark.

Abstract

Recent measurements of the skewness of the derivative of the temperature fluctuation θ, implying the breakdown of local isotropy even in high Reynolds number shear flows, are examined. Using the temperature signal in a slightly heated axisymmetric jet, a detailed quantitative analysis is made of the suggestion that the observed presence of a well-defined large-scale pattern of the temperature signal in these flows is responsible for this breakdown. A selective ensemble averaging technique is used for separating this pattern from fluctuations superposed on it. The technique is extended to extract the large-scale patterns in simultaneously measured axial (u), radial (v) velocity fluctuations, and the products uv, and , so that it is possible to separate contributions of these patterns from those of the superposed fluctuations to several important turbulent quantities. The mean shape of the patterns, their degree of anisotropy and correlation, and their contribution to turbulence intensities and Reynolds shear stress are obtained. Probability densities and spectra of these quasi-homogeneous superposed fluctuations are also obtained. Results show that the fluctuations are consistent with local isotropy and make the dominant contribution to the turbulence intensities, that the large-scale patterns are responsible for the observed skewness values of the derivative of v, and that the fluctuations may be responsible for a significant part of the turbulent momentum and heat transport, especially in the region of the jet where the turbulent energy production is substantial.

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. & Van Atta, C. W. 1975 J. Fluid Mech. 67, 273.
Antonia, R. A. & Atkinson, J. D. 1976 Phys. Fluids 19, 1273.
Antonia, R. A., Prabhu, A. & Stephenson, S. E. 1975 J. Fluid Mech. 72, 455.
Antonia, R. A., Chambers, A. J., Van Atta, C. W., Friehe, C. A. & Helland, K. N. 1978 Phys. Fluids 21, 509.
Badri Narayanan, M. A., Narasimha, R. & Rao, K. N. 1971 Proc. 4th Australasian Conf. on Hydraulics and Fluid Mech., Monash University, p. 73.
Bradshaw, P. 1967 J. Fluid Mech. 29, 625.
Bradshaw, P., Ferriss, D. H. & Johnson, R. F. 1964 J. Fluid Mech. 19, 591.
Corrsin, S. 1949 J. Aero. Sci. 16, 757.
Corrsin, S. 1957 Symp. on Naval Hydrodyn. (ed. F. S. Sherman), p. 373.
Corrsin, S. 1958 N.A.C.A. R. & M. 58B11.
Falco, R. E. 1977 Phys. Fluids 20, S124.
Freymuth, P. 1978 Phys. Fluids 21, 2114.
Freymuth, P. & Uberoi, M. S. 1971 Phys. Fluids 14, 2574.
Freymuth, P. & Uberoi, M. S. 1973 Phys. Fluids 16, 161.
Gibson, C. H., Stegen, G. R. & Williams, R. B. 1970 J. Fluid Mech. 41, 153.
Gibson, C. H., Friehe, C. A. & McConnell, S. O. 1977 Phys. Fluids 20, S156.
Grant, H. L., Stewart, R. W. & Moilliet, A. 1962 J. Fluid Mech. 12, 241.
Jenkins, P. E. & Goldschmidt, V. W. 1976 Phys. Fluids 19, 613.
LaRue, J. C. & Libby, P. A. 1976 Phys. Fluids 19, 1864.
Lu, S. S. & Willmarth, W. W. 1973 J. Fluid Mech. 60, 481.
Mestayer, P. G., Gibson, C. H., Coantic, M. F. & Patel, A. S. 1976 Phys. Fluids 19, 1279.
Rao, K. N., Narasimha, R. & Badri Narayanan, M. A. 1971 J. Fluid Mech. 48, 339.
Sreenivasan, K. R. & Antonia, R. A. 1977 Phys. Fluids 20, 1986.
Sreenivasan, K. R. & Antonia, R. A. 1978 A.I.A.A. J. 16, 867.
Sreenivasan, K. R., Antonia, R. A. & Britz, D. 1978 Local isotropy and large structures in a heated turbulent jet. Dept. of Mech. Engng Tech. Note FM 27, Univ. of Newcastle, Australia.
Sreenivasan, K. R., Antonia, R. A. & Danh, H. Q. 1977 Phys. Fluids 20, 1238.
Sreenivasan, K. R., Tavoularis, S., Henry, R. & Corrsin, S. 1979 Submitted to J. Fluid Mech.
Sunyach, M. & Mathieu, J. 1969 Int. J. Heat Mass Transfer 12, 1679.
Tavoularis, S. 1978 Experiments in turbulent transport and mixing. Ph.D. Thesis, The Johns Hopkins University, Baltimore.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. Cambridge, Massachusetts: The M.I.T. Press.
Townsend, A. A. 1948 Aust. J. Scientific Res. A 1, 161.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Ueda, H. & Hinze, J. O. 1975 J. Fluid Mech. 67, 125.
Wyngaard, J. C. 1971 J. Fluid Mech. 48, 763.