Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T07:11:45.885Z Has data issue: true hasContentIssue false

Local energy of a bubble system and its loss due to acoustic radiation

Published online by Cambridge University Press:  17 May 2016

Qianxi Wang*
Affiliation:
School of Mathematics, The University of Birmingham, Ring Rd N, Birmingham B15 2TS, UK
*
Email address for correspondence: [email protected]

Abstract

Energy concentration and loss due to a violent collapsing bubble are essential phenomena to many applications such as cavitation erosion, biomedical ultrasonics, sonochemistry, cavitation cleaning and underwater explosions. It has been generally known that the energy of a bubble system is radiated away as an acoustic wave and dissipated by viscosity. However, there is no study in the scientific literature on the time history of the energy of a bubble system in a compressible flow. Here we have introduced the local energy of a non-spherical bubble system, consisting of the energy of the interior gas, the interface and the exterior liquid in the inner asymptotic region. The local energy determines the local bubble and flow dynamics, including the concentration of energy, stress and momentum. We obtain a simple formula for the radiated energy associated with acoustic radiation in terms of the bubble volume history. We perform calculations of the energy history for a transient bubble in a compressible liquid in an infinite domain, subject to buoyancy and near a rigid boundary, respectively. Our calculations show that the local energy of a transient bubble follows a step function in time, being nearly conserved for most of each cycle of oscillation but decreasing rapidly and significantly at bubble inception and at the end of collapse, due to the emission of steep pressure waves or shock waves. The loss of the local energy of the bubble system due to the emission of steep pressure waves and the associated damping of the bubble oscillation are diminished by buoyancy effects and decrease with the buoyancy parameter. Similarly, the loss of the local energy of a bubble system is diminished by the presence of a rigid boundary and decreases with the proximity of the bubble to the boundary. We also analyse the energy concentration of single bubble sonoluminescence in a standing acoustic wave.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhatov, I., Lindau, O., Topolnikov, A., Mettin, R., Vakhitova, N. & Lauterborn, W. 2001 Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids 13, 2805.CrossRefGoogle Scholar
Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.Google Scholar
Best, J. P. 1993 The formation of toroidal bubbles upon collapse of transient cavities. J. Fluid Mech. 251, 79107.CrossRefGoogle Scholar
Blake, J. R. 1988 The Kelvin impulse: application to cavitation bubble dynamics. J. Austral. Math. Soc. B 30, 127146.CrossRefGoogle Scholar
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.CrossRefGoogle Scholar
Blake, J. R., Hooton, M. C., Robinson, P. B. & Tong, P. R. 1997 Collapsing cavities, toroidal bubbles and jet impact. Phil. Trans. R. Soc. Lond. A 355, 537550.CrossRefGoogle Scholar
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press, (available online).CrossRefGoogle Scholar
Brujan, E. A. & Matsumoto, Y. 2012 Collapse of micrometer-sized cavitation bubbles near a rigid boundary. Microfluid Nanofluid 13, 957966.CrossRefGoogle Scholar
Calvisi, M. L., Iloreta, J. I. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave: II. Reflected shock intensifies nonspherical cavitation collapse. J. Fluid Mech. 616, 6397.CrossRefGoogle Scholar
Chahine, G. L. & Bovis, A. 1980 Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface. In Cavitation and Inhomogeneities in Underwater Acoustics, pp. 2329. Springer.CrossRefGoogle Scholar
Chahine, G. L. & Harris, G.1998a Multi-Cycle underwater explosion bubble model. Part I: theory and validation examples for free-field bubble problems. US Naval Surface Warfare Center Indian Head Division, Report IHCR 98-64, June 1998.Google Scholar
Chahine, G. L. & Harris, G.1998b Multi-Cycle underwater explosion model. Part II: validation Examples for Hull Girder Whipping Problems. US Naval Surface Warfare Center Indian Head Division, Report IHCR 98-65.Google Scholar
Chahine, G. L. & Hsiao, C.-T. 2015 Modelling cavitation erosion using fluid – material interaction simulation. Interface Focus 5, 20150016.CrossRefGoogle Scholar
Chahine, G. L., Kapahi, A., Choi, J.-K. & Hsiao, C.-T. 2016 Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochem. 29, 528549.CrossRefGoogle ScholarPubMed
Chahine, G. L. & Perdue, T. O. 1988 Simulation of the three-dimensional behaviour of an unsteady large bubble near a structure. In Proceedings of the 3rd International Colloqium on Drops and Bubbles, Monterey, CA.Google Scholar
Chen, Y. L. & Israelachvili, J. 1991 New mechanism of cavitation damage. Science 252, 11571160.CrossRefGoogle Scholar
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.CrossRefGoogle Scholar
Coussios, C. C. & Roy, R. A. 2007 Applications of acoustics and cavitation to non-invasive therapy and drug delivery. Annu. Rev. Fluid Mech. 40, 395420.CrossRefGoogle Scholar
Curtiss, G. A., Leppinen, D. M., Wang, Q. X. & Blake, J. R. 2013 Ultrasonic cavitation near a tissue layer. J. Fluid Mech. 730, 245272.CrossRefGoogle Scholar
Delius, M. 1990 Effect of lithotripter shock waves on tissues and materials. In Proceedings of the 12th ISNA: Frontiers of Nonlinear Acoustics (ed. Hamilton, M. F. & Blackstock, D. T.), pp. 3146. Elsevier.Google Scholar
Duncan, J. H., Milligan, C. D. & Zhang, S. G. 1996 On the interaction between a bubble and a submerged compliant structure. J. Sound Vib. 197 (1), 1744.CrossRefGoogle Scholar
Duncan, J. H. & Zhang, S. G. 1993 On the interaction of a collapsing cavity and a compliant wall. J. Fluid Mech. 226, 401423.CrossRefGoogle Scholar
Feng, Z. C. & Leal, L. G. 1997 Nonlinear bubble dynamics. Annu. Rev. Fluid Mech. 29, 201243.CrossRefGoogle Scholar
Fuster, D., Dopazo, C. & Hauke, G. 2011 Liquid compressibility effects during the collapse of a single cavitating bubble. J. Acoust. Soc. Am. 129 (1), 122131.CrossRefGoogle ScholarPubMed
Fuster, D. & Montel, F. 2015 Mass transfer effects on linear wave propagation in diluted bubbly liquids. J. Fluid Mech. 779, 598621.CrossRefGoogle Scholar
Gaitan, D. F., Crum, L. A., Church, C. C. & Roy, R. A. 1992 Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J. Acoust. Soc. Am. 91, 31663183.CrossRefGoogle Scholar
Geers, T. L. & Hunter, K. S. 2002 An integrated wave-effects model for an underwater explosion bubble. J. Acoust. Soc. Am. 111, 15841601.CrossRefGoogle ScholarPubMed
Geers, T. L., Lagumbay, R. S. & Vasilyev, O. V. 2012 Acoustic-wave effects in violent bubble collapse. J. Appl. Phys. 112, 054910.CrossRefGoogle Scholar
Geers, T. L. & Zhang, P. 1994 Doubly asymptotic approximations for submerged structures with internal fluid volumes. J. Appl. Mech. 61, 893906.CrossRefGoogle Scholar
Gompf, B., Günther, R., Nick, G., Pecha, R. & Eisenmenger, W. 1997 Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys. Rev. Lett. 79, 14051408.CrossRefGoogle Scholar
Hilgenfeldt, S., Brenner, M. P., Grossman, S & Lohse, D. J. 1998 Analysis of Rayleigh–Plesset dynamics for sonoluminescing bubbles. J. Fluid Mech. 365, 171204.CrossRefGoogle Scholar
Hilgenfeldt, S., Grossmann, S. & Lohse, D. 1999 A simple explanation of light emission in sonoluminescence. Nature 398, 402405.CrossRefGoogle Scholar
Hiller, R., Putterman, S. J. & Barber, B. P. 1992 Spectrum of synchronous picosecond sonoluminescence. Phys. Rev. Lett. 69, 11821184.CrossRefGoogle ScholarPubMed
Hiller, R. A., Putterman, S. J. & Weninger, K. R. 1998 Time-resolved spectra of sonoluminescence. Phys. Rev. Lett. 80, 10901093.CrossRefGoogle Scholar
Hsiao, C. T., Jayaprakash, A., Kapahi, A., Choi, J.-K. & Chahine, G. L. 2014 Modelling of material pitting from cavitation bubble collapse. J. Fluid Mech. 755, 142175.CrossRefGoogle Scholar
Hung, C. F. & Hwangfu, J. J. 2010 Experimental study of the behavior of mini-charge underwater explosion bubbles near different boundaries. J. Fluid Mech. 651, 5580.CrossRefGoogle Scholar
Iloreta, J. I., Fung, N. M. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave: I. Consequences of interference between incident and reflected waves. J. Fluid Mech. 616, 4361.CrossRefGoogle Scholar
Jayaprakash, A., Chao-Tsung, H. & Chahine, G. 2010 Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall. Trans. ASME J. Fluids Engng 134 (3), 031301-1.Google Scholar
Jayaprakash, A., Singh, S. & Chahine, G. 2011 Experimental and numerical investigation of single bubble dynamics in a two-phase bubbly medium. Trans. ASME J. Fluids Engng 133, 121305.CrossRefGoogle Scholar
Johnsen, E. & Colonius, T. 2006 Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219 (2), 715732.CrossRefGoogle Scholar
Johnsen, E. & Colonius, T. 2008 Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124, 20112020.CrossRefGoogle ScholarPubMed
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Keller, J. B. & Kolodner, I. I. 1956 Damping of underwater explosion bubble oscillations. J. Appl. Phys. 27 (10), 11521161.CrossRefGoogle Scholar
Keller, J. B. & Miksis, M. 1980 Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628633.CrossRefGoogle Scholar
Klaseboer, E., Fong, S. W., Turangan, C. K., Khoo, B. C., Szeri, A. J., Calvisi, M. L., Sankin, G. N. & Zhong, P. 2007 Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 3356.CrossRefGoogle ScholarPubMed
Klaseboer, E., Hung, K. C., Wang, C., Wang, C. W., Khoo, B. C., Boyce, P., Debono, S. & Charlier, H. 2005 Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J. Fluid Mech. 537, 387413.CrossRefGoogle Scholar
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391399.CrossRefGoogle Scholar
Lauterborn, W. & Kurz, T. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73, 10650.CrossRefGoogle Scholar
Lauterborn, W. & Ohl, C. D. 1997 Cavitation bubble dynamics. Ultrason. Sonochem. 4, 6575.CrossRefGoogle ScholarPubMed
Lauterborn, W. & Vogel, A. 2013 Shock wave emission by laser generated bubbles. In Bubble Dynamics & Shock Waves (ed. Delale, C. F.), pp. 67103. Springer.CrossRefGoogle Scholar
Lee, M., Klaseboer, E. & Khoo, B. C. 2007 On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407429.CrossRefGoogle Scholar
Leighton, T. 1994 The Acoustic Bubble. Academic Press.Google Scholar
Leslie, T. A & Kennedy, J. E. 2006 High-intensity focused ultrasound principles, current uses, and potential for the future. Ultrasound Quart. 22, 263272.CrossRefGoogle ScholarPubMed
Lezzi, A. & Prosperetti, A. 1987 Bubble dynamics in a compressible liquid. Part. 2. Second-order theory. J. Fluid Mech. 185, 289321.CrossRefGoogle Scholar
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J.  Fluid Mech. 479, 327348.CrossRefGoogle Scholar
Lohse, D. 2005 Cavitation hots up. Nature 434, 3334.CrossRefGoogle ScholarPubMed
Longuet-Higgins, M. S. 1989a Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes. J. Fluid Mech. 201, 525541.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1989b Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initial-value problem. J. Fluid Mech. 201, 543565.CrossRefGoogle Scholar
Lundgren, T. S. & Mansour, N. N. 1991 Vortex ring bubbles. J. Fluid Mech. 72, 391399.Google Scholar
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423, 153156.CrossRefGoogle ScholarPubMed
Naudé, C. F. & Ellis, A. T. 1961 On the mechanism of cavitation damage by non hemispherical cavities collapsing in contact with a solid boundary. Trans. ASME J. Basic Engng 83, 648656.CrossRefGoogle Scholar
Pearson, A., Blake, J. R. & Otto, S. R. 2004 Jets in bubbles. J. Engng Maths 48 (3–4), 391412.CrossRefGoogle Scholar
Pedley, T. J. 1968 The toroidal bubble. J. Fluid Mech. 32, 97112.CrossRefGoogle Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283290.CrossRefGoogle Scholar
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.CrossRefGoogle Scholar
Prosperetti, A. & Lezzi, A. 1986 Bubble dynamics in a compressible liquid. Part. 1. First-order theory. J. Fluid Mech. 168, 457478.CrossRefGoogle Scholar
Ohl, C. D., Arora, M., Ikink, R., de Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006 Sonoporation from jetting cavitation bubbles. Biophys. J. 91, 42854295.CrossRefGoogle ScholarPubMed
Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 9498.CrossRefGoogle Scholar
Roberts, W. W., Hall, T. L., Ives, K., Wolf, J. S., Fowlkes, J. B. & Cain, C. A. 2006 Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J. Urol. 175, 734738.Google ScholarPubMed
Rogers, J. C. W., Szymczawk, W. G., Bergera, A. E. & Soloman, J. M. 1990 Numerical solution of hydrodynamic free boundary problems. Zntl. Series Numer. Maths 95, 241266.Google Scholar
Shima, A., Takayama, K., Tomita, Y. & Miura, N. 1981 An experimental study on effects of a solid wall on the motion of bubbles and shock waves in bubble collapse. Acustica 48, 293301.Google Scholar
Suslick, K. S. 1990 Sonochemistry. Science 247, 14391445.CrossRefGoogle ScholarPubMed
Suslick, K. S. & Crum, L. A. 1997 Sonochemistry and sonoluminescence. In Encyclopedia of Acoustics (ed. Crocker, M. J.), pp. 271282. Wiley-Interscience.CrossRefGoogle Scholar
Szeri, A. J., Storey, B. D., Pearson, A. & Blake, J. R. 2003 Heat and mass transfer during the violent collapse of nonspherical bubbles. Phys. Fluids 15, 25762586.CrossRefGoogle Scholar
Szymczawk, W. G., Rogers, J. C. W., Soloman, J. M. & Bergera, A. E. 1993 A numerical algorithm. For hydrodynamic free boundary problems. J. Comput. Phys. 106 (3), 19336.Google Scholar
Taylor, G. I. 1942 Vertical motion of a spherical bubble and the pressure surrounding it. In Underwater Explosion Research, vol. 2, pp. 131144. Office of Naval Research.Google Scholar
Terashima, H. & Tryggvason, G. 2009 A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J. Comput. Phys. 228 (11), 40124037.CrossRefGoogle Scholar
Tinguely, M., Obreschkow, D., Kobel, P., Dorsaz, N., de Bosset, A. & Farhat, M. 2012 Energy partition at the collapse of spherical cavitation bubbles. Phys. Rev. E 86, 046315.CrossRefGoogle ScholarPubMed
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.CrossRefGoogle Scholar
Turangan, C. K., Jamaluddin, A. R., Ball, G. J. & Leighton, T. G. 2008 Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. J. Fluid Mech. 598, 125.CrossRefGoogle Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.CrossRefGoogle Scholar
Vogel, A., Schweiger, P., Frieser, A., Asiyo, M. & Birngruber, R. 1990 Intraocular Nd:YAG laser surgery: damage mechanism, damage range and reduction of collateral effects. IEEE J. Quant. Electron. 26, 22402260.CrossRefGoogle Scholar
Wang, C. & Khoo, B. C. 2004 An indirect boundary element method for three dimensional explosion bubbles. J. Comput. Phys. 194 (2), 451480.CrossRefGoogle Scholar
Wang, Q. X. 1998 The numerical analyses of the evolution of a gas bubble near an inclined wall. Theor. Comput. Fluid Dyn. 12, 2951.CrossRefGoogle Scholar
Wang, Q. X. 2004 Numerical modelling of violent bubble motion. Phys. Fluids 16 (5), 16101619.Google Scholar
Wang, Q. X. 2013 Underwater explosion bubble dynamics in a compressible liquid. Phys. Fluids 25, 072104.CrossRefGoogle Scholar
Wang, Q. X. 2014 Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. J. Fluid Mech. 745, 509536.CrossRefGoogle Scholar
Wang, Q. X. & Blake, J. R. 2010 Nonspherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech. 659, 191224.CrossRefGoogle Scholar
Wang, Q. X. & Blake, J. R. 2011 Nonspherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave.. J. Fluid Mech. 679, 559581.CrossRefGoogle Scholar
Wang, Q. X., Liu, W. K., Zhang, A. & Sui, Y. 2015 Bubble dynamics in very close to a rigid boundary. Interface Focus 5 (5), 20150048.CrossRefGoogle Scholar
Wang, Q. X. & Manmi, K. 2014 Microbubble dynamics near a wall subjected to a travelling acoustic wave. Phys. Fluids 26, 032104.CrossRefGoogle Scholar
Wang, Q. X., Manmi, K. & Liu, K. K. 2015 Cell mechanics in biomedical cavitation. Interface Focus 5 (5), 20150018.CrossRefGoogle ScholarPubMed
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 1996a Nonlinear interaction between gas bubble and free surface. Comput. Fluids 25 (7), 607.CrossRefGoogle Scholar
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 1996b Strong interaction between buoyancy bubble and free surface. Theor. Comput. Fluid Dyn. 8, 7388.CrossRefGoogle Scholar
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 2005 Vortex ring modelling for toroidal bubbles. Theor. Comput. Fluid Dyn. 19 (5), 303317.CrossRefGoogle Scholar
Wardlaw, A. Jr. & Luton, J. A. 2000 Fluid–structure interaction for close-in explosions. Shock Vib. J. 7, 265275.CrossRefGoogle Scholar
Wardlaw, A. B., Luton, J. A., Renzi, J. R., Kiddy, K. C. & McKeown, R. M.2003 The Gemini Euler solver for the coupled simulation of underwater explosions. NSWCIHD/IHTR-25009.Google Scholar
Wardlaw, A. Jr., Luton, J. A., Renzi, J. J. & Kiddy, K. 2003 Fluid–structure coupling methodology for undersea weapons. In Fluid Structure Interaction II, pp. 251263. WIT Press.Google Scholar
Van Dyke, M. D. 1975 Perturbation Methods in Fluid Mechanics, 2nd edn. The Parabolic Press.Google Scholar
Yang, Y. X., Wang, Q. X. & Tan, S. K. 2013 Dynamic features of a laser-induced cavitation bubble near a solid boundary. Ultrasonics Sonochemistry 20 (4), 10981103.CrossRefGoogle Scholar
Young, F. R. 1989 Cavitation. McGraw-Hill.Google Scholar
Zhang, A. M., Cui, P., Cui, J. & Wang, Q. X 2015 Experimental study on bubble dynamics subject to buoyancy. J. Fluid Mech. 776, 137160.CrossRefGoogle Scholar
Zhang, S. G. & Duncan, J. H. 1994 On the nonspherical collapse and rebound of a cavitation bubble. Phys. Fluids 6 (7), 23522362.CrossRefGoogle Scholar
Zhang, S. G., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.CrossRefGoogle Scholar
Zhang, Y. & Li, S. C. 2014 Mass transfer during radial oscillations of gas bubbles in viscoelastic mediums under acoustic excitation. Intl J. Heat Mass Transfer 69, 106116.CrossRefGoogle Scholar
Zhang, Y. L., Yeo, K. S., Khoo, B. C. & Wang, C. 2001 3D jet impact and toroidal bubbles. J. Comput. Phys. 166 (2), 336360.CrossRefGoogle Scholar