Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T21:50:55.134Z Has data issue: false hasContentIssue false

A liquid compound jet

Published online by Cambridge University Press:  20 April 2006

C. H. Hertz
Affiliation:
Department of Electrical Measurements, Lund Institute of Technology, S-220 07 Lund, Sweden
B. Hermanrud
Affiliation:
Department of Electrical Measurements, Lund Institute of Technology, S-220 07 Lund, Sweden Present address: Siemens–Elema AB, Solna, Sweden.

Abstract

The principle and basic physics of a new type of liquid-in-air jet are described. This jet is generated by a primary fluid jet that emerges from a nozzle below the surface of a stationary (secondary) fluid. After breaking the surface, the jet consists of the central primary jet surrounded by a sheath of secondary fluid which has been entrained by the primary jet during its passage through the secondary fluid. Normally the flow in this compound jet is laminar, and it breaks up into drops due to capillary instability.

In this paper the generation of compound jets is discussed, and the flow pattern in the jet is studied experimentally both in stable and unstable conditions. Three different types of instabilities can be elicited on the jet. The jet mechanism is described quantitatively, and expressions for the jet velocity and some other parameters are derived.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, E. N. & Tsien, L. C. 1937 Proc. Phys. Soc. Lond. 49, 381.
Ashley, C. T., Edds, K. E. & Elbert, D. L. 1977 IBM J. Res. Dev. 21, 69.
Batchelor, G. K. & Gill, A. E. 1962 J. Fluid Mech. 14, 529.
Brun, R. F. & Lienhard, J. H. 1968 ASME Paper 68-FE-44.
Chaudhary, K. C. & Redekopp, L. G. 1980 J. Fluid Mech. 96, 257.
Einstein, A. 1907 Ann. Physik 17, 549.
Filipsson, L. G. R., Lagerstedt, J. H. T. & Bark, F. H. 1977/78 J. Non-Newt. Fluid Mech. 3, 97.
Haenlein, A. 1932 NACA Tech. Memo. 659.
Hermanrud, B. 1981 Dissertation Report of the Department of Electrical Measurements LUTEDX/(TEEM-1006)/1–143.
Hermanrud, B. & Hertz, C. H. 1979 J. Appl. Photogr. Engng 5, 220.
Hertz, C. H. & MÅNSSON, Å. 1972 Rev. Sci. Instrum. 43, 413.
Hertzberg, L. A., Sweet, R. G. & Hertzberg, L. A. 1976 Sci. Am. 234, p. 108.
Kamphoefner, F. J. 1972 IEEE Trans. Electr. Dev. ED19, 584.
Landau, L. D. & Lifschitz, E. M. 1958 Statistical Physics, p. 472. Pergamon.
Landau, L. D. & Lifschitz, E. M. 1959 Fluid Mechanics, p. 86. Pergamon.
Langhaar, H. L. 1942 J. Appl. Mech. 9, A55.
Lessen, M. & Singh, P. J. 1973 J. Fluid Mech. 60, 433.
Mccarthy, M. J. & Molloy, N. A. 1974 Chem. Engng J. 7, 1.
Mcnaughton, K. J. & Sinclair, C. G. 1966 J. Fluid Mech. 25, 367.
Phinney, R. E. 1973 J. Fluid Mech. 60, 689.
Rayleigh, Lord 1879 Proc. Lond. Math. Soc. 10, 4.
Reynolds, A. J. 1962 J. Fluid Mech. 14, 552.
Schlichting, L. 1933 Z. angew. Math. Mech. 13, 260.
Sweet, R. G. 1964 Stanford Univ. Tech. Rep. 1722–1.
Tomotika, S. 1935 Proc. R. Soc. Lond. A150, 322.
Weber, C. 1931 Z. angew. Math. Mech. 11, 136.