Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T00:09:21.905Z Has data issue: false hasContentIssue false

Linear waves in two-layer fluids over periodic bottoms

Published online by Cambridge University Press:  06 April 2016

Jie Yu*
Affiliation:
Department of Civil Engineering, and School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
Leo R. M. Maas
Affiliation:
Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Texel, The Netherlands Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

A new, exact Floquet theory is presented for linear waves in two-layer fluids over a periodic bottom of arbitrary shape and amplitude. A method of conformal transformation is adapted. The solutions are given, in essentially analytical form, for the dispersion relation between wave frequency and generalized wavenumber (Floquet exponent), and for the waveforms of free wave modes. These are the analogues of the classical Lamb’s solutions for two-layer fluids over a flat bottom. For internal modes the interfacial wave shows rapid modulation at the scale of its own wavelength that is comparable to the bottom wavelength, whereas for surface modes it becomes a long wave carrier for modulating short waves of the bottom wavelength. The approximation using a rigid lid is given. Sample calculations are shown, including the solutions that are inside the forbidden bands (i.e. Bragg resonated).

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009 Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part I. Perturbation analysis. J. Fluid Mech. 624, 191224.Google Scholar
Athanassoulis, G. A. & Belibassakis, K. A. 1999 A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech. 389, 275301.Google Scholar
Drijfhout, S. & Maas, L. R. M. 2007 Impact of channel geometry and rotation on the trapping of internal tides. J. Phys. Oceanogr. 37, 27402763.Google Scholar
Echeverri, P., Yokossi, T., Balmforth, N. J. & Peacock, T. 2011 Tidally generated internal-wave attractors between double ridges. J. Fluid Mech. 669, 354374.Google Scholar
Grisouard, N., Staquet, C. & Pairaud, I. 2008 Numerical simulation of a two-dimensional internal wave attractor. J. Fluid Mech. 614, 114.Google Scholar
Hazewinkel, J., van Breevoort, P., Dalziel, S. B. & Maas, L. R. M. 2008 Observations on the wavenumber spectrum and evolution of an internal wave attractor. J. Fluid Mech. 598, 373382.Google Scholar
Hazewinkel, J., Grisouard, N. & Dalziel, S. B. 2011 Comparison of laboratory and numerically observed scalar fields of an internal wave attractor. Eur J. Mech. (B/Fluids) 30 (1), 5156.Google Scholar
Hazewinkel, J., Tsimitri, C., Maas, L. R. M. & Dalziel, S. B. 2010 Observations on the robustness of internal wave attractors to perturbations. Phys. Fluids 22, 107102.Google Scholar
Howard, L. N. & Yu, J. 2007 Normal modes of a rectangular tank with corrugated bottom. J. Fluid Mech. 593, 209234.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Liu, Y. & Yue, D. K. P. 1998 On generalised Bragg scattering of surface waves by bottom ripples. J. Fluid Mech. 356, 297326.Google Scholar
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F.-P. A. 1997 Observation of an internal wave attractor in a confined stably-stratified fluid. Nature 388, 557561.Google Scholar
Maas, L. R. M. & Lam, F.-P. A. 1995 Geometric focusing of internal waves. J. Fluid Mech. 300, 141.Google Scholar
Pietrzak, J. D., Kranenburg, C. & Abraham, G. 1990 Resonant internal waves in fluid flow. Nature 344, 844847.Google Scholar
Pietrzak, J. D. & Labeur, R. J. 2004 Trapped internal waves over undular topography in a partially mixed estuary. Ocean. Dyn. 54, 315323.Google Scholar
Rhines, P. & Bretherton, F. 1973 Topographic Rossby waves in a rough-bottomed ocean. J. Fluid Mech. 61, 583607.Google Scholar
Scolan, H., Ermanyuk, E. & Dauxios, T. 2013 Nonlinear fate of internal wave attractors. Phys. Rev. Lett. 110 (23), 234501.Google Scholar
Weidman, P. D., Herczynski, A., Yu, J. & Howard, L. N. 2015 Experiments on standing waves in a rectangular tank with a corrugated bed. J. Fluid Mech. 777, 122150.Google Scholar
Whitham, G. B. 1979 Lectures on Wave Propagation. Published for the Tata Institute of Fundamental Research, Springer.Google Scholar
Yu, J. & Howard, L. N. 2010 On higher order Bragg resonance of water waves by bottom corrugations. J. Fluid Mech. 659, 484504.Google Scholar
Yu, J. & Howard, L. N. 2012 Exact Floquet theory for waves over arbitrary periodic topographies. J. Fluid Mech. 712, 451470.Google Scholar
Yu, J. & Zheng, G. 2012 Exact solutions for wave propagation over a patch of large bottom corrugations. J. Fluid Mech. 713, 362375.Google Scholar