Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T06:48:36.088Z Has data issue: true hasContentIssue false

Linear stability of the flow past a spheroidal bubble

Published online by Cambridge University Press:  14 June 2007

BINZE YANG
Affiliation:
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
ANDREA PROSPERETTI*
Affiliation:
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA Faculty of Applied Science and Burgerscentrum, University of Twente, AE 7500 Enschede, The Netherlands
*
Author to whom correspondence should be addressed: [email protected]

Abstract

The linear stability of the axisymmetric flow past a fixed-shape spheroid with free-slip boundary conditions is studied numerically to gain some insight into the path instability of bubbles rising in liquids. Qualitatively, the results are similar to those for a solid sphere. The m = 1 mode gives rise to a double-threaded wake and proves to be the most unstable mode, with a first regular bifurcation followed by a Hopf bifurcation. The importance of the base-flow vorticity is highlighted by a stability analysis of the axisymmetric base flow ‘frozen’ before reaching steady state. Setting viscosity to zero in the perturbation equations results in a faster growth of the primary instability, which indicates its root in inertial effects.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achenbach, E. 1974 Vortex shedding from spheres. J. Fluid Mech. 62, 209221.CrossRefGoogle Scholar
Aybers, N. M. & Tapucu, A. 1969a The motion of gas bubbles rising through stagnant liquid. Wärme und Stoffübertragung 2, 118128.CrossRefGoogle Scholar
Aybers, N. M. & Tapucu, A. 1969b Studies on the drag and shape of gas bubbles rising through a stagnant liquid. Wärme und Stoffübertragung 2, 171177.CrossRefGoogle Scholar
Batchelor, G. 1967 An Introduction to Fluid Mechanics. Cambridge University Press.Google Scholar
Benjamin, T. 1987 Hamiltonian theory for motions of bubbles in an infinite liquid. J. Fluid Mech. 181, 349379.CrossRefGoogle Scholar
Blanco, A. & Magnaudet, J. 1995 The structure of axisymmetric high-Reynolds number flow around an ellipsoidal bubble of fixed shape. Phys. Fluids 7, 12651274.CrossRefGoogle Scholar
Brown, D. L., Cortez, R. & Minion, M. L. 2001 Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168, 464499.CrossRefGoogle Scholar
Brücker, C. 1999 Structure and dynamics of the wake of bubbles and its relevance to bubble interaction. Phys. Fluids 11, 17811796.CrossRefGoogle Scholar
Clift, R., Grace, J. & Weber, M. 1978 Bubbles, Drops, and Particles. Academic.Google Scholar
Dandy, D. S. & Leal, L. G. 1986 Boundary layer separation from a smooth slip surface. Phys. Fluids 29, 13601366.CrossRefGoogle Scholar
Dritschel, D. G. 1988 Nonlinear stability bounds for inviscid, two-dimensional, parallel or circular flows with monotonic vorticity, and the analogous three-dimensional quasi-geostrophic flows. J. Fluid Mech. 191, 575581.CrossRefGoogle Scholar
Duineveld, P. 1995 The rise velocity and shape of bubbles in pure water at high Reynolds number. J. Fluid Mech. 292, 325332.CrossRefGoogle Scholar
Duraiswami, R. & Prosperetti, A. 1992 Orthogonal mapping in two dimensions. J. Comput. Phys. 98, 254268.CrossRefGoogle Scholar
Ellingsen, K. & Risso, F. 2001 On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J. Fluid Mech. 440, 235268.CrossRefGoogle Scholar
Ghidersa, B. & Duśek, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 3369.CrossRefGoogle Scholar
Goldburg, A. & Florsheim, B. H. 1966 Transition and Strouhal number for the incompressible wake of various bodies. Phys. Fluids 9, 4550.CrossRefGoogle Scholar
Hartunian, R. & Sears, W. 1957 On the stability of small gas bubbles moving uniformly in various liquids. J. Fluid Mech. 3, 2747.CrossRefGoogle Scholar
Jenny, M., Duśek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.CrossRefGoogle Scholar
Johnson, T. & Patel, V. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.CrossRefGoogle Scholar
Kopiev, V. F. & Chernyshev, S. A. 1997 Vortex ring eigen-oscillations as a source of sound. J. Fluid Mech. 341, 1957.CrossRefGoogle Scholar
Leal, L. G. 1989 Velocity transport and wake structure for bluff bodies at finite Reynolds number. Phys. Fludis A 1, 124131.CrossRefGoogle Scholar
Lunde, K. & Perkins, R. J. 1997 Observations on wakes behind spheroidal bubbles and particles. In ASME Fluids Engineering Division Summer Meeting, paper 3530.Google Scholar
Lunde, K. & Perkins, R. 1998 Shape oscillations of rising bubbles. Appl. Sci. Res. 58, 387408.CrossRefGoogle Scholar
Magarvey, R. H. & Bishop, R. L. 1961 Transition ranges for 3-dimensional wakes. Can. J. Phys. 39, 14181422.CrossRefGoogle Scholar
Magnaudet, J. 2006 A physical mechanism for the primary instability of axisymmetric wakes past bluff bodies. Bull. Am. Phys. Soc. 51 (9), 128129.Google Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659708.CrossRefGoogle Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311338.CrossRefGoogle Scholar
Magnaudet, J., Rivero, M. & Fabre, J. 1995 Accelerated flow past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97135.CrossRefGoogle Scholar
Maxworthy, T. 1977 Some experimental studies of vortex rings. J. Fluid Mech. 81, 465495.CrossRefGoogle Scholar
Meiron, D. 1989 On the stability of gas bubbles rising in an inviscid fluid. J. Fluid Mech. 198, 101114.CrossRefGoogle Scholar
Moore, D. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid Mech. 23, 749766.CrossRefGoogle Scholar
Mougin, G. & Magnaudet, J. 2002 Path instability of a rising bubble. Phys. Rev. Lett 88, 014502/1.Google ScholarPubMed
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.CrossRefGoogle Scholar
Ormières, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev. Lett. 83, 8083.CrossRefGoogle Scholar
Pier, B. & Huerre, P. 2001 Nonlinear self-sustained structures and fronts in spatially developing wake flows. J. Fluid Mech. 435, 145174.CrossRefGoogle Scholar
Prosperetti, A. 2004 Bubbles. Phys. Fluids 16, 18521865.CrossRefGoogle Scholar
Ryskin, G. & Leal, L. 1983 Orthogonal mapping in two dimensions. J. Comput. Phys. 98, 254268.Google Scholar
Ryskin, G. & Leal, L. 1984 Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech. 148, 1935.CrossRefGoogle Scholar
Saffman, P. G. 1956 On the rise of small air bubbles in water. J. Fluid Mech. 1, 249275.CrossRefGoogle Scholar
Saffman, P. G. 1978 The number of waves on unstable vortex rings. J. Fluid Mech. 84, 625639.CrossRefGoogle Scholar
el Sawi, M. 1974 Distorted gas bubbles at large Reynolds number. J. Fluid Mech. 62, 163183.CrossRefGoogle Scholar
Schouveiler, L. & Provansal, M. 2002 Self-sustained oscillations in the wake of a sphere. Phys. Fluids 14, 38463854.CrossRefGoogle Scholar
Shew, W. L., Poncet, S. & Pinton, J.-F. 2006 Force measurements on rising bubbles. J. Fluid Mech. 569, 5160.CrossRefGoogle Scholar
Takagi, S., Matsumoto, Y. & Huang, H. 1997 Numerical analysis of a single rising bubble using boundary-fitted coordinate system. JSME Intl J. B 40, 4250.CrossRefGoogle Scholar
Thompson, M. C., Leweke, T. & Provansal, M. 2001 Kinematics and dynamics of sphere wake transition. J. Fluids Struct. 15, 575585.CrossRefGoogle Scholar
Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.CrossRefGoogle Scholar
Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weakly externally imposed shear. J. Fluid Mech. 73, 721733.CrossRefGoogle Scholar
Veldhuis, C., Biesheuvel, A., van Wijngaarden, L. & Lohse, D. 2005 Motion and wake structure of spherical particles. Nonlinearity 18, C1C8.CrossRefGoogle Scholar
de Vries, A., Biesheuvel, A. & van Wijngarden, L. 2002 Notes on the path and wake of a gas bubble rising in pure water. Intl J. Multiphase Flow 28, 18231835.CrossRefGoogle Scholar
Widnall, S. E. & Sullivan, J. P. 1973 On the stability of vortex rings. Proc. R. Soc. Lond. A 332, 335353.Google Scholar
Yang, B. & Prosperetti, A. 2006 A second-order boundary-fitted projection method for free-surface flow computations. J. Comput. Phys. 213, 574590.CrossRefGoogle Scholar
Yang, B., Prosperetti, A. & Takagi, S. 2003 The transient rise of a bubble subject to shape or volume changes. Phys. Fluids 15, 26402648.CrossRefGoogle Scholar
Yang, X. & Zebib, A. 1989 Absolute and convective instability of a cylinder wake. Phys. Fluids A 1, 689696.CrossRefGoogle Scholar