Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T10:42:38.224Z Has data issue: false hasContentIssue false

Linear instability, nonlinear instability and ligament dynamics in three-dimensional laminar two-layer liquid–liquid flows

Published online by Cambridge University Press:  10 June 2014

Lennon Ó Náraigh*
Affiliation:
School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
Prashant Valluri
Affiliation:
Institute of Materials and Processes, Sanderson Building, School of Engineering, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JL, UK
David M. Scott
Affiliation:
Edinburgh Parallel Computing Centre, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK
Iain Bethune
Affiliation:
Edinburgh Parallel Computing Centre, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK
Peter D. M. Spelt
Affiliation:
Département Mécanique, Université de Lyon 1, and Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA), CNRS, Ecole Centrale de Lyon, 69134 Ecully, France
*
Email address for correspondence: [email protected]

Abstract

We consider the linear and nonlinear stability of two-phase density-matched but viscosity-contrasted fluids subject to laminar Poiseuille flow in a channel, paying particular attention to the formation of three-dimensional waves. A combination of Orr–Sommerfeld–Squire analysis (both modal and non-modal) with direct numerical simulation of the three-dimensional two-phase Navier–Stokes equations is used. For the parameter regimes under consideration, under linear theory, the most unstable waves are two-dimensional. Nevertheless, we demonstrate several mechanisms whereby three-dimensional waves enter the system, and dominate at late time. There exists a direct route, whereby three-dimensional waves are amplified by the standard linear mechanism; for certain parameter classes, such waves grow at a rate less than but comparable to that of the most dangerous two-dimensional mode. Additionally, there is a weakly nonlinear route, whereby a purely spanwise wave grows according to transient linear theory and subsequently couples to a streamwise mode in weakly nonlinear fashion. Consideration is also given to the ultimate state of these waves: persistent three-dimensional nonlinear waves are stretched and distorted by the base flow, thereby producing regimes of ligaments, ‘sheets’ or ‘interfacial turbulence’. Depending on the parameter regime, these regimes are observed either in isolation, or acting together.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azzopardi, B. J. 2003 Drops in annular two-phase flow. Intl J. Multiphase Flow 23, Suppl., 153.CrossRefGoogle Scholar
Barthelet, P., Charru, F. & Fabre, J. 1995 Experimental study of interfacial long waves in a two-layer shear flow. J. Fluid Mech. 303, 2353.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Boomkamp, P. A. M., Boersma, B. J., Miesen, R. H. M. & Beijnon, G. V. 1997 A Chebyshev collocation method for solving two-phase flow stability problems. J. Comput. Phys. 132, 191200.Google Scholar
Boomkamp, P. A. M. & Miesen, R. H. M. 1996 Classification of instabilities in parallel two-phase flow. Intl J. Multiphase Flow 22, 6788.CrossRefGoogle Scholar
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Dover.Google Scholar
Charru, F. & Hinch, E. 2000 Phase diagram of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195223.CrossRefGoogle Scholar
Chomaz, J.-M. 2003 Fully nonlinear dynamics of parallel wakes. J. Fluid Mech. 495, 5775.CrossRefGoogle Scholar
Couairon, A. & Chomaz, J. M. 1999 Primary and secondary nonlinear global instability. Physica D 132, 428456.CrossRefGoogle Scholar
Craik, A. D. D. 1969 The stability of plane Couette flow with viscosity stratification. J. Fluid Mech. 36 (4), 685693.CrossRefGoogle Scholar
Craik, A. D. D. 1985 Wave Interactions and Fluid Flows. Cambridge University Press.Google Scholar
Cristini, V., Guido, S., Alfani, A., Blawzdziewicz, J. & Loewenberg, M. 2003 Drop breakup and fragment size distribution in shear flow. J. Rheol. 47, 12831298.CrossRefGoogle Scholar
Delbende, I. & Chomaz, J.-M. 1998 Nonlinear convective/absolute instabilities in parallel two-dimensional wakes. Phys. Fluids 10, 27242736.CrossRefGoogle Scholar
Delbende, I., Chomaz, J.-M. & Huerre, P. 1998 Absolute/convective instabilities in the Batchelor vortex: a numerical study of the linear impulse response. J. Fluid Mech. 355, 229254.CrossRefGoogle Scholar
Ding, H., Gilani, M. N. H. & Spelt, P. D. M. 2010 Sliding, pinch-off and detachment of a droplet on a wall in shear flow. J. Fluid Mech. 644, 217244.CrossRefGoogle Scholar
Ding, H., Spelt, P. D. M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226, 20782095.CrossRefGoogle Scholar
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009 Numerical simulation of droplets, bubbles, and waves: state of the art. Fluid Dyn. Res. 41, 065001.CrossRefGoogle Scholar
Govindarajan, R. & Sahu, K. C. 2014 Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech. 46, 331353.CrossRefGoogle Scholar
Gropp, W., Lusk, E. & Skjellum, A. 1994 Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press.Google Scholar
Huerre, P. 2000 Open shear flow instabilities. In Perspectives in Fluid Mechanics (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), Cambridge University Press.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instability in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
King, M. R. & McCready, M. J. 2000 Weakly nonlinear simulation of planar stratified flows. Phys. Fluids 12, 92102.CrossRefGoogle Scholar
Lecoeur, N., Hale, C. P., Spelt, P. D. M. & Hewitt, G. F.2010 Visualization of droplet entrainment in turbulent stratified pipe flow. In Proceedings of the 7th International Conference on Multiphase Flow, ICMF 2010, Tampa, FL, 30 May–4 June.Google Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 72111.CrossRefGoogle Scholar
Meland, R., Gran, I. R., Olsen, R. & Munkejord, S. T. 2007 Reduction of parasitic currents in level-set calculations with a consistent discretization of the surface-tension force for the CSF model. In 16th Australasian Fluid Mechanics Conference, 3–7 December 2007, Gold Coast, Australia (ed. Jacobs, P., McIntyre, P., Cleary, M., Buttsworth, D., Mee, D., Clements, R., Morgan, R. & Lemckert, C.), .Google Scholar
Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.CrossRefGoogle Scholar
Ó Náraigh, L., Spelt, P. D. M., Matar, O. K. & Zaki, T. A. 2011 Interfacial instability of turbulent two-phase stratified flow: pressure-driven flow and thin liquid films. Intl J. Multiphase Flow 37, 812830.Google Scholar
Ó Náraigh, L., Spelt, P. D. M. & Shaw, S. J. 2013 Absolute linear instability in laminar and turbulent gas/liquid two-layer channel flow. J. Fluid Mech. 714, 5894.CrossRefGoogle Scholar
van Noorden, T. L., Boomkamp, P. A. M., Knapp, M. C. & Verheggen, T. M. M. 1998 Transient growth in parallel two-phase flow: analogies and differences with single-phase flow. Phys. Fluids 10, 20992101.CrossRefGoogle Scholar
Pavliotis, G. & Stuart, A. M. 2008 Multiscale Methods. Springer.Google Scholar
Russo, G. & Smereka, P. 2000 A remark on computing distance functions. Comput. Phys. 163, 5167.CrossRefGoogle Scholar
Sahu, K. & Matar, O. K. 2011 Three-dimensional convective and absolute instabilities in pressure-driven two-layer channel flow. Intl J. Multiphase Flow 37, 987993.CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567603.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Scott, D. M., Ó Náraigh, L., Bethune, I., Valluri, P. & Spelt, P. D. M.2013a Performance enhancement and optimization of the TPLS and DIM two-phase flow solvers. Tech. Rep. Edinburgh Parallel Computing Centre.Google Scholar
Scott, D. M., Ó Náraigh, L., Bethune, I., Valluri, P. & Spelt, P. D. M.2013b TPLS: high resolution direct numerical simulation (DNS) of two-phase flows. Available at: http://sourceforge.net/projects/tpls/.Google Scholar
Selvam, B., Talon, L., Lesshafft, L. & Meiburg, E. 2009 Convective/absolute instability in miscible core-annular flow. Part 2. Numerical simulations and nonlinear global modes. J. Fluid Mech. 618, 323348.CrossRefGoogle Scholar
Sussman, M. & Fatemi, E. 1998 An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible flow. SIAM J. Sci. Comput. 24, 11651191.Google Scholar
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186203.Google Scholar
Trefethen, N. L., Trefethen, A. E., Teddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 561, 578584.CrossRefGoogle Scholar
Valluri, P., Ó Náraigh, L., Ding, H. & Spelt, P. D. M. 2010 Linear and nonlinear spatio-temporal instability in laminar two-layer flows. J. Fluid Mech. 656, 458480.CrossRefGoogle Scholar
Valluri, P., Spelt, P. D. M., Lawrence, C. J. & Hewitt, G. F. 2007 Numerical simulation of the onset of slug initiation in laminar horizontal channel flow. Intl J. Multiphase Flow 34, 206225.CrossRefGoogle Scholar
Yecko, P. & Zaleski, S. 2005 Transient growth in two-phase mixing layers. J. Fluid Mech. 528, 4352.CrossRefGoogle Scholar
Yecko, P., Zaleski, S. & Fullana, J.-M. 2002 Viscous modes in two-phase mixing layers. Phys. Fluids 14, 41154122.CrossRefGoogle Scholar
Yiantsios, S. G. & Higgins, B. G. 1988 Linear stability of plane Poiseuile flow of two superposed fluids. Phys. Fluids 31, 32253238.CrossRefGoogle Scholar
Yih, C. S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27, 337352.CrossRefGoogle Scholar