Hostname: page-component-55f67697df-twqc4 Total loading time: 0 Render date: 2025-05-11T12:05:56.700Z Has data issue: false hasContentIssue false

Linear dynamics of over-expanded annular supersonic jets

Published online by Cambridge University Press:  07 May 2025

Vincent Jaunet*
Affiliation:
ISAE-ENSMA, Institut PPrime, Université de Poitiers, UPR-3346 CNRS, 1 Avenue Clement Ader, 86360 Chasseneuil-du-Poitou, France
Guillaume Lehnasch
Affiliation:
ISAE-ENSMA, Institut PPrime, Université de Poitiers, UPR-3346 CNRS, 1 Avenue Clement Ader, 86360 Chasseneuil-du-Poitou, France
*
Corresponding author: Vincent Jaunet, [email protected]

Abstract

This article delves into the dynamics of inviscid annular supersonic jets, akin to those exiting converging–diverging nozzles in over-expanded regimes. It focuses on the first azimuthal Fourier mode of flow fluctuations and examines their behaviour with varying mixing layer parameters and expansion regimes. The study reveals that two unstable Kelvin–Helmholtz waves exist in all cases, with the outer-layer wave being more unstable due to differences in the velocity gradient. The inner-layer wave is more sensitive to changes in base flow and extends beyond the jet, potentially contributing to nozzle resonances. The article also investigates upstream propagating guided-jet modes, which are found to be robust and not highly sensitive to changes in base flow, which makes them essential for understanding jet dynamics. A simplified model is used to obtain ideal base flows but with realistic shape in order to study the effects of varying nozzle pressure ratios on the dynamics of the waves supported by the jet.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baars, W.J., Tinney, C.E., Ruf, J.H., Brown, A.M. & McDaniels, D.M. 2012 Wall pressure unsteadiness and side loads in overexpanded rocket nozzles. AIAA J. 50 (1), 6173.CrossRefGoogle Scholar
Bakulu, F., Lehnasch, G., Jaunet, V., Goncalves da Silva, E. & Girard, S. 2021 Jet resonance in truncated ideally contoured nozzles. J. Fluid Mech. 919, A32.CrossRefGoogle Scholar
Bhat, T. & Seiner, J. 1993 The effect of velocity profiles on supersonic jet noise. In 15th Aeroacoustics Conference, pp. 4410. AIAA.CrossRefGoogle Scholar
Chow, W.L. & Chang, I.S. 1975 Mach reflection associated with over-expanded nozzle free jet flows. AIAA J. 13 (6), 762766.CrossRefGoogle Scholar
Dahl, M.D. & Morris, P.J. 1997 a Noise from supersonic coaxial jets, part 1: mean flow predictions. J. Sound Vib. 200 (5), 643663.CrossRefGoogle Scholar
Dahl, M.D. & Morris, P.J. 1997 b Noise from supersonic coaxial jets, part 3: inverted velocity profile. J. Sound Vib. 200 (5), 701719.CrossRefGoogle Scholar
Dahl, M.D. & Morris, P.J. 1997 c Noise from supersonic coaxial jets, part 2: normal velocity profile. J. Sound Vib. 200 (5), 665699.CrossRefGoogle Scholar
Deck, S. 2009 Delayed detached eddy simulation of the end-effect regime and side-loads in an overexpanded nozzle flow. Shock Waves 19 (3), 239249.CrossRefGoogle Scholar
Deck, S. & Nguyen, A.T. 2004 Unsteady side loads in a thrust-optimized contour nozzle at hysteresis regime. Aiaa J. 42 (9), 18781888.CrossRefGoogle Scholar
Dosanjh, D.S., Abdelhamid, A.N. & Yu, J.C. 1969 Noise reduction from interacting coaxial supersonic jet flows. NASA SP 207, 63101.Google Scholar
Dosanjh, D.S., Yu, J.C., Abdelhailiid, A.M.R.N. 1971 Reduction of noise from supersonic jet flows. AIAA J. 9 (12), 23462353.CrossRefGoogle Scholar
Dumnov, G. 1996 Unsteady side-loads acting on the nozzle with developed separation zone. In 32nd Joint Propulsion Conference and Exhibit, pp. 1–8. AIAA.CrossRefGoogle Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets–a review. Intl J. Aeroacoust. 18 (2–3), 118188.CrossRefGoogle Scholar
Edgington-Mitchell, D., Jaunet, V., Jordan, P., Towne, A., Soria, J. & Honnery, D. 2018 Upstream-travelling acoustic jet modes as a closure mechanism for screech. J. Fluid Mech. 855, R1.CrossRefGoogle Scholar
Edgington-Mitchell, D., Li, X., Liu, N., He, F., Wong, T.Y., Mackenzie, J. & Nogueira, P. 2022 A unifying theory of jet screech. J. Fluid Mech. 945, A8.CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Mihaescu, M. 2018 Oscillation modes in screeching jets. AIAA J. 56 (7), 29182924.CrossRefGoogle Scholar
Hadjadj, A. & Onofri, M. 2009 Nozzle flow separation. Shock Waves 19 (3), 163169.CrossRefGoogle Scholar
Jaunet, V., Arbos, S., Lehnasch, G. & Girard, S. 2017 Wall pressure and external velocity field relation in overexpanded supersonic jets. AIAA J. 55 (12), 42454257.CrossRefGoogle Scholar
Jaunet, V., Mancinelli, M., Jordan, P., Towne, A., Edgington-Mitchell, D.M., Lehnasch, G. & Girard, S. 2019 Dynamics of round jet impingement. In 25th AIAA/CEAS Aeroacoustics Conference, pp. 2769. AIAA.CrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45 (1), 173195.CrossRefGoogle Scholar
Jordan, P., Jaunet, V., Towne, A., Cavalieri, A.V.G., Colonius, T., Schmidt, O. & Agarwal, A. 2018 Jet–flap interaction tones. J. Fluid Mech. 853, 333358.CrossRefGoogle Scholar
Li, H. & Ben-Dor, G. 1998 Mach reflection wave configuration in two-dimensional supersonic jets of overexpanded nozzles. AIAA J. 36 (3), 488491.CrossRefGoogle Scholar
Mancinelli, M., Jaunet, V., Jordan, P. & Towne, A. 2019 Screech-tone prediction using upstream-travelling jet modes. Exp. Fluids 60 (1), 22.CrossRefGoogle Scholar
Mancinelli, M., Jaunet, V., Jordan, P. & Towne, A. 2021 A complex-valued resonance model for axisymmetric screech tones in supersonic jets. J. Fluid Mech. 928, A32.CrossRefGoogle Scholar
Mancinelli, M., Martini, E., Jaunet, V., Jordan, P., Towne, A. & Gervais, Y. 2023 Reflection and transmission of a Kelvin–Helmholtz wave incident on a shock in a jet. J. Fluid Mech. 954, A9.CrossRefGoogle Scholar
Martelli, E., Saccoccio, L., Ciottoli, P.P., Tinney, C.E., Baars, W.J. & Bernardini, M. 2020 Flow dynamics and wall-pressure signatures in a high-Reynolds-number overexpanded nozzle with free shock separation. J. Fluid Mech. 895, A29.CrossRefGoogle Scholar
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.CrossRefGoogle Scholar
Nave, L.H. & Coffey, G.A. 1973 Sea level side loads in high-area-ratio rocket engines. In 9th Propulsion Conference. AIAA.Google Scholar
Nogueira, P.A.S., Jordan, P., Jaunet, V., Cavalieri, A.V.G., Towne, A. & Edgington-Mitchell, D. 2022 Absolute instability in shock-containing jets. J. Fluid Mech. 930, A10.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Colonius, T., Cavalieri, A.V.G., Jordan, P. & Brès, G.A. 2017 Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 11531181.CrossRefGoogle Scholar
Schmucker, R.H. 1973 a Flow process in overexpanded chemical rocket nozzles part 1: flow separation. NASA Tech. Mem. NASA-TM-77396. NASA.Google Scholar
Schmucker, R.H. 1973 b Flow process in overexpanded chemical rocket nozzles part 2 : side loads due to asymetric separation. NASA Tech. Mem. NASA-TM-77395. NASA.Google Scholar
Schmucker, R.H. 1973 c Flow process in overexpanded chemical rocket nozzles part 3: methods for the aimed flow separation and side load reduction. NASA Tech. Mem. NASA-TM-77048. NASA.Google Scholar
Stark, R.H. 2005 Flow separation in rocket nozzles, a simple criteria. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA.CrossRefGoogle Scholar
Tam, C.K.W. 1972 On the noise of a nearly ideally expanded supersonic jet. J. Fluid Mech. 51 (1), 6995.CrossRefGoogle Scholar
Tam, C.K.W. 1991 Broadband shock-associated noise from supersonic jets in flight. J. Sound Vib. 151 (1), 131147.CrossRefGoogle Scholar
Tam, C.K.W. & Hu, F.Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.CrossRefGoogle Scholar
Tam, C.K.W. & Tanna, H.K. 1985 a Shock associated noise of inverted-profile coannular jets, part ii: condition for minimum noise. J. Sound Vib. 98 (1), 115125.CrossRefGoogle Scholar
Tam, C.K.W. & Tanna, H.K. 1985 b Shock associated noise of inverted-profile coannular jets, part iii: shock structure and noise characteristics. J. Sound Vib. 98 (1), 127145.CrossRefGoogle Scholar
Tanna, H.K., Brown, W.H. & Tam, C.K.W. 1985 Shock associated noise of inverted-profile coannular jets, part i: experiments. J. Sound Vib. 98 (1), 95113.CrossRefGoogle Scholar
Tanna, H.K., Tester, B.J. & Lau, J.C. 1979 The noise and flow characteristics of inverted-profile coannular jets. NASA Tech. Rep. NASA-CR-158995. NASA.Google Scholar
Tarsia Morisco, C., Robinet, J,-C., Herpe, J & Saucereau, D. 2023 Impinging shear layer instability in over-expanded nozzle dynamics. Phys. Fluids 35, 116118.CrossRefGoogle Scholar
Towne, A., Cavalieri, A.V.G., Jordan, P., Colonius, T., Schmidt, O., Jaunet, V. & Brès, G.A. 2017 Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 11131152.CrossRefGoogle Scholar
Trefethen, L.N. 2000 Spectral Methods in MATLAB. SIAM.CrossRefGoogle Scholar
Varé, M. & Bogey, C. 2022 Generation of acoustic tones in round jets at a mach number of 0.9 impinging on a plate with and without a hole. J. Fluid Mech. 936, A16.CrossRefGoogle Scholar
Yu, J.C. & Dosanjh, D.S. 1971 Noise field of coaxial interacting supersonic jet flows. In 9th Aerospace Sciences Meeting. AIAA.CrossRefGoogle Scholar