Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T21:47:39.849Z Has data issue: false hasContentIssue false

Linear and nonlinear stability of floating viscous sheets

Published online by Cambridge University Press:  19 August 2011

G. Pfingstag*
Affiliation:
Saint-Gobain Recherche, 39 Quai Lucien Lefranc, BP 135, 93303 Aubervilliers CEDEX, France CNRS and Université Pierre et Marie Curie, Univ Paris 06, UMR 7190, Institut Jean le Rond d’Alembert, Paris, France Laboratoire de Physique Statistique, École Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France
B. Audoly
Affiliation:
CNRS and Université Pierre et Marie Curie, Univ Paris 06, UMR 7190, Institut Jean le Rond d’Alembert, Paris, France
A. Boudaoud
Affiliation:
Laboratoire de Physique Statistique, École Normale Supérieure, Université Pierre et Marie Curie, Université Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

We study the stability of a thin, Newtonian viscous sheet floating on a bath of denser fluid. We first derive a general set of equations governing the evolution of a nearly flat sheet, accounting for geometrical nonlinearities associated with moderate rotations. We extend two classical models by considering arbitrary external body and surface forces; these two models follow from different scaling assumptions, and are derived in a unified way. The equations capture two modes of deformation, namely viscous bending and stretching, and describe the evolution of thickness, mid-surface and in-plane velocity as functions of two-dimensional coordinates. These general equations are applied to a floating viscous sheet, considering gravity, buoyancy and surface tension. We investigate the stability of the flat configuration when subjected to arbitrary in-plane strain. Two unstable modes can be found in the presence of compression. The first one combines undulations of the centre-surface and modulations of the thickness, with a wavevector perpendicular to the direction of maximum applied compression. The second one is a buckling mode; it is purely undulatory and has a wavevector along the direction of maximum compression. A nonlinear analysis yields the long-time evolution of the undulatory mode.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barnes, G. & Woodcock, R. 1958 Liquid rope-coil effect. Am. J. Phys. 26, 205209.Google Scholar
2. Benjamin, T. B. & Mullin, T. 1988 Buckling instabilities in layers of viscous liquid subjected to shearing. J. Fluid Mech. 195, 523540.Google Scholar
3. Biot, M. A. 1964 Theory of viscous buckling of multilayered fluids undergoing finite strain. Phys. Fluids 7, 855861.CrossRefGoogle Scholar
4. Blake, K. R. & Bejan, A. 1984 Experiments on the buckling of thin fluid layers undergoing end-compression. Trans. ASME: J. Fluids Engng 106, 7478.Google Scholar
5. Boudaoud, A. & Chaïeb, S. 2001 Singular thin viscous sheet. Phys. Rev. E 64, 050601.CrossRefGoogle ScholarPubMed
6. Buckmaster, J. D. & Nachman, A. 1978 The buckling and stretching of a viscida. Part II. Effects of surface tension. Q. J. Mech. Appl. Math. 31, 157168.Google Scholar
7. Buckmaster, J. D., Nachman, A. & Ting, L. 1975 The buckling and stretching of a viscida. J. Fluid Mech. 69, 120.CrossRefGoogle Scholar
8. Charru, F. 2007 Instabilités Hydrodynamiques, CNRS edn. EDP Sciences.Google Scholar
9. Ciarlet, P. G. 1980 A justification of the von Kármán equations. Arch. Rat. Mech. Anal. 73 (4), 349389.Google Scholar
10. Cruickshank, J. O. & Munson, B. R. 1982 A theoretical prediction of the fluid buckling frequency. Phys. Fluids 25, 19351937.CrossRefGoogle Scholar
11. Da Silveira, R., Chaïeb, S. & Mahadevan, L. 2000 Rippling instability of a collapsing bubble. Science 287 (5457), 14681471.Google Scholar
12. Debrégeas, G., de Gennes, P. G. & Brochard-Wyart, F. 1998 The life and death of ‘bare’ viscous bubbles. Science 279 (5357), 17041707.Google Scholar
13. Dret, H. L. & Raoult, A. 1995 The nonlinear membrane model as variational limit of three-dimensional nonlinear elasticity. J. Math. Pures Appl. 75, 551580.Google Scholar
14. Dyson, R. J. & Jensen, O. E. 2010 A fibre-reinforced fluid model of anisotropic plant cell growth. J. Fluid Mech. 655, 472503.Google Scholar
15. England, P. & McKenzie, D. 1983 Correction to: A thin viscous sheet model for continental deformation. Geophys. J. R. Astron. Soc. 73, 523532.CrossRefGoogle Scholar
16. Filippov, A. & Zheng, Z. 2010 Dynamics and shape instability of thin viscous sheets. Phys. Fluids 22, 023601.Google Scholar
17. Griffiths, I. M. & Howell, P. D. 2007 The surface-tension-driven evolution of a two-dimensional annular viscous tube. J. Fluid Mech. 593, 181208.CrossRefGoogle Scholar
18. Griffiths, I. M. & Howell, P. D. 2008 Mathematical modelling of non-axisymmetric capillary tube drawing. J. Fluid Mech. 605, 181206.Google Scholar
19. Griffiths, I. M. & Howell, P. D. 2009 The surface-tension-driven retraction of a viscida. SIAM J. Appl. Math. 70 (5), 14531487.CrossRefGoogle Scholar
20. Guillou-Frottier, L., Buttles, J. & Olson, P. 1995 Laboratory experiments on the structure of subducted lithosphere. Earth Planet. Sci. Lett. 133, 1934.CrossRefGoogle Scholar
21. Howell, P. D. 1996 Models for thin viscous sheets. Eur. J. Appl. Math. 7, 321343.Google Scholar
22. Jeffreys, H. 1925 The flow of water in an included channel of rectangular section. Phil. Mag. 49, 793.Google Scholar
23. Johnson, A. M. & Fletcher, R. C. 1994 Folding of Viscous Layers: Mechanical Analysis and Interpretation of Structures in Deformed Rock. Columbia University Press.Google Scholar
24. Kücken, M. & Newell, A. C. 2004 A model for fingerprint formation. Europhys. Lett. 68, 141146.Google Scholar
25. Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3 (11), 2644.Google Scholar
26. Mahadevan, L., Ryu, S. & Samuel, A. D. T. 1998 Fluid rope trick investigated. Nature 392, 140.Google Scholar
27. Manneville, P. 2004 Instabilities, Chaos and Turbulence. Imperial College Press.CrossRefGoogle Scholar
28. Marheineke, N. & Wegener, R. 2009 Asymptotic model for the dynamics of curved viscous fibres with surface tension. J. Fluid Mech. 622, 345369.CrossRefGoogle Scholar
29. O’Keefe, J. A. 1969 Water on the moon and a new nondimensional number. Science 163, 669.Google Scholar
30. Pearson, J. R. A. 1985 Mechanics of Polymer Processing. Elsevier.Google Scholar
31. Pearson, J. R. A. & Petrie, C. J. S. 1970a The flow of a tubular film. Part 1. Formal mathematical representation. J. Fluid Mech. 40 (1), 119.CrossRefGoogle Scholar
32. Pearson, J. R. A. & Petrie, C. J. S. 1970b The flow of a tubular film. Part 2. Interpretation of the model and discussion of solutions. J. Fluid Mech. 42 (3), 609625.Google Scholar
33. Perazzo, C. A. & Gratton, J. 2010 Convergent flow in a two-layer system and mountain building. Phys. Fluids 22, 056603.CrossRefGoogle Scholar
34. Pfingstag, G., Audoly, B. & Boudaoud, A. 2011 Thin viscous sheets with inhomogeneous viscosity. Phys. Fluids (submitted).CrossRefGoogle Scholar
35. Pilkington, A. 1969 The float glass process. Proc. R. Soc. Lond. A 314, 125.Google Scholar
36. Ramberg, H. 1981 Gravity, Deformation and the Earth’s Crust, 2nd edn. Academic.Google Scholar
37. Rayleigh, J. W. 1896 The Theory of Sound. Macmillan.Google Scholar
38. Ribe, N. M. 2001 Bending and stretching of thin viscous sheets. J. Fluid Mech. 433, 135160.CrossRefGoogle Scholar
39. Ribe, N. M. 2002 A general theory for the dynamics of thin viscous sheets. J. Fluid Mech. 457, 255283.Google Scholar
40. Ribe, N. M., Stutzmann, E., Ren, Y. & van der Hilst, R. 2007 Buckling instabilities of subducted lithosphere beneath the transition zone. Earth Planet. Sci. Lett. 254, 173179.Google Scholar
41. Scheid, B., Quiligotti, S., Tran, B. & Stone, H. A. 2009 Lateral shaping and stability of a stretching viscous sheet. Eur. Phys. J. B 68 (4), 487494.Google Scholar
42. Smith, R. B. 1975 Unified theory of the onset of folding, boudinage, and mullion structure. Bull. Geol. Soc. Am. 86, 16011609.2.0.CO;2>CrossRefGoogle Scholar
43. Steele, C. R. 2000 Shell stability related to pattern formation in plants. Trans. ASME: J. Appl. Mech. 67 (2), 237.Google Scholar
44. Stokes, G. G. 1845 On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Trans. Camb. Phil. Soc. 8, 287.Google Scholar
45. Suleiman, S. M. & Munson, B. R. 1981 Viscous buckling of thin fluid layers. Phys. Fluids 24, 15.CrossRefGoogle Scholar
46. Taylor, G. I. 1968 Instabilities of jets, threads and sheets of viscous fluid. In Proceedings of the 12th International Congress of Applied Mechanics, pp. 382388. Springer.Google Scholar
47. Toro, R. & Burnod, Y. 2005 A morphogenetic model for the development of cortical convolutions. Cereb. Cortex 15, 19001913.Google Scholar
48. van de Fliert, B. W., Howell, P. D. & Ockendon, J. R. 1995 Pressure-driven flow of a thin viscous sheet. J. Fluid Mech. 292, 359376.CrossRefGoogle Scholar
49. Yarin, A. L., Gospodinov, P. & Roussinov, V. I. 1994 Stability loss and sensitivity in hollow fibre drawing. Phys. Fluids 6 (4).CrossRefGoogle Scholar
50. Zel’dovich, Y. B., Istratov, A. G., Kidin, N. I. & Librovich, V. B. 1980 Flame propagation in tubes: hydrodynamics and stability. Combust. Sci. Technol. 24 (1–2), 113.Google Scholar