Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T21:49:44.257Z Has data issue: false hasContentIssue false

The life-cycle of tripoles in two-dimensional incompressible flows

Published online by Cambridge University Press:  26 April 2006

Xavier Carton
Affiliation:
SHOM/GRGS, 18 Av. Edouard Belin, 31055 Toulouse Cedex, France
Bernard Legras
Affiliation:
Laboratoire de Météorologie Dynamique du CNRS, École Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

Abstract

The mechanisms of coherent tripole formation from unstable shielded circular vortices are analysed in the context of two-dimensional incompressible flows. Three stages are identified during the transformation process: the linear growth of the initial normal mode perturbation, its nonlinear amplification and the finite-amplitude saturation under the tripolar form. We give a geometrical discussion of the mutual influence of the core vortex and of the satellites generated from the shield. The role of the angular momentum in determining the finite amplitude saturation is demonstrated using a simple elliptical model of the core vortex associated with two point-vortex satellites. The long-time asymmetric breaking of the tripole into a dipole and a monopole is shown to be driven by the erosion of the core vortex by stripping and diffusion. Finally the influence of bottom topography on tripole formation is considered, providing a rich phenomenology when the height of the topography is varied.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basdevant, C., Legras, B., Sadourny, R. & Beland, m. 1981 A study of barotropic model flows: intermittency, waves and predictability. J. Atmos. Sci. 38, 23052326.Google Scholar
Beigie, D., Leonard, A. & Wiggins, S. 1992 The dynamics associated with the chaotic tangles of two-dimensional quasiperiodic vector fields : theory and applications. In Nonlinear Phenomena in Atmospheric and Oceanic Sciences (ed. G. Carnevale & R. Pierrehumbert), pp. 47138. Springer.
Carnevale, G. F. & Kloosterziel, R. C. 1994 Emergence and evolution of triangular vortices. J. Fluid Mech. 259, 305331.Google Scholar
Carnevale, G. F., Kloosterziel, R. C. & Heijst, G. J. F. Van 1991 Propagation of barotropic vortices over topography in a rotating tank. J. Fluid Mech. 233, 119139.Google Scholar
Carton, X. 1988 Stabilité des structures cohérentes mono- et multipolaires dans les écoulements bidimensionnels et quasi-géostrophiques bi-couches. PhD thesis, Université P. and M. Curie.
Carton, X., Flierl, G. R. & Polvani, L. 1989 The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys. Lett. 9, 339344.Google Scholar
Flierl, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349388.Google Scholar
Gent, P. R. & McWilliams, J. C. 1986 The instability of barotropic circular vortices. Geophys. Astrophys. Fluid Dyn. 35, 209233.Google Scholar
Heijst, G. J. F. Van, Kloosterziel, R. C. & Williams, C. W. M. 1991 Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech. 225, 301331.Google Scholar
Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. 1985 On the use and significance of isentropic potential vorticity maps. Q. J. R. Met. Soc. 111, 877946.Google Scholar
Kida, S. 1981 Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Japan 50, 35173520.Google Scholar
Kloosterziel, R. C. & Heijst, G. J. F. Van 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.Google Scholar
Legras, B. & Dritschel, D. G. 1993a A comparison of the contour surgery and pseudo-spectral methods. J. Comput. Phys. 104, 287302.Google Scholar
Legras, B. & Dritschel, D. G. 1993b Vortex stripping and the generation of high vorticity gradients in two-dimensional flows. Appl. Sci. Res. 51, 445455.Google Scholar
Legras, B. & Dritschel, D. G. 1991 The elliptical model of two-dimensional vortex dynamics. Part I : The basic state. Phys. Fluids A 3, 845854.Google Scholar
Legras, B., Santangelo, P. & Benzi, R. 1988 High-resolution numerical experiments for forced two-dimensional turbulence. Europhys. Lett. 5, 3742.Google Scholar
McWilliams, J. C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.Google Scholar
Montgomery, D. & Joyce, G. 1974 Statistical mechanics of negative temperature states. Phys. Fluids 17, 11391145.Google Scholar
Morel, Y. & Carton, X. 1994 Multipolar vortices in two-dimensional incompressible flows. J. Fluid Mech. 267, 2351.Google Scholar
Orlandi, P. & Heijst, G. J. F. Van 1992 Numerical simulations of tripolar vortices in 2d flow. Fluid Dyn. Res. 9, 179206.Google Scholar
Pingree, R. & Le Cann, B. 1992 Three anticyclonic slope water oceanic eddies (SWODDIES) in the Southern Bay of Biscay in 1990. Deep-Sea Res. 39, 11471175.Google Scholar
Polvani, L. & Carton, X. 1990 The tripole: a new coherent vortex structure of incompressible two-dimensional flows. Geophys. Astrophys. Fluid Dyn. 51, 87102.Google Scholar
Robert, R. & Sommeria, J. 1991 Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291310.Google Scholar
Swaters, G. E. 1991 Dynamical characteristics of decaying Lamb couples. Z. Angew. Math. Phys. 42, 109121.Google Scholar
Tavantzis, J. & Ting, L. 1988 The dynamics of three vortices revisited. Phys. Fluids 6, 13921409.Google Scholar