Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T10:12:45.381Z Has data issue: false hasContentIssue false

Layering and turbulence surrounding an anticyclonic oceanic vortex: in situ observations and quasi-geostrophic numerical simulations

Published online by Cambridge University Press:  21 August 2013

Bach Lien Hua
Affiliation:
Laboratoire de Physique des Oceans, IFREMER-CNRS, BP 70, 29280 Plouzané, France
Claire Ménesguen*
Affiliation:
Laboratoire de Physique des Oceans, IFREMER-CNRS, BP 70, 29280 Plouzané, France
Sylvie Le Gentil
Affiliation:
Laboratoire de Physique des Oceans, IFREMER-CNRS, BP 70, 29280 Plouzané, France
Richard Schopp
Affiliation:
Laboratoire de Physique des Oceans, IFREMER-CNRS, BP 70, 29280 Plouzané, France
Bruno Marsset
Affiliation:
Laboratoire de Géophysique et Géodynamique, IFREMER, BP 70, 29280 Plouzané, France
Hidenori Aiki
Affiliation:
JAMSTEC, Yokohama 236-0001, Japan
*
Email address for correspondence: [email protected]

Abstract

Evidence of persistent layering, with a vertical stacking of sharp variations in temperature, has been presented recently at the vertical and lateral periphery of energetic oceanic vortices through seismic imaging of the water column. The stacking has vertical scales ranging from a few metres up to 100 m and a lateral spatial coherence of several tens of kilometres comparable with the vortex horizontal size. Inside this layering, in situ data display a $[{ k}_{h}^{- 5/ 3} { k}_{h}^{- 2} ] $ scaling law of horizontal scales for two different quantities, temperature and a proxy for its vertical derivative, but for two different ranges of wavelengths, between 5 and 50 km for temperature and between 500 m and 5 km for its vertical gradient. In this study, we explore the dynamics underlying the layering formation mechanism, through the slow dynamics captured by quasi-geostrophic equations. Three-dimensional high-resolution numerical simulations of the destabilization of a lens-shaped vortex confirm that the vertical stacking of sharp jumps in density at its periphery is the three-dimensional analogue of the preferential wind-up of potential vorticity near a critical radius, a phenomenon which has been documented for barotropic vortices. For a small-Burger (flat) lens vortex, baroclinic instability ensures a sustained growth rate of sharp jumps in temperature near the critical levels of the leading unstable modes. Such results can be obtained for a background stratification which is due to temperature only and does not require the existence of salt anomalies. Aloft and beneath the vortex core, numerical simulations well reproduce the $[{ k}_{h}^{- 5/ 3} { k}_{h}^{- 2} ] $ scaling law of horizontal scales for the vertical derivative of temperature that is observed in situ inside the layering, whatever the background stratification. Such a result stems from the tracer-like behaviour of the vortex stretching component and previous studies have shown that spectra of tracer fields can be steeper than $- 1$, namely in $- 5/ 3$ or $- 2$, if the advection field is very compact spatially, with a $- 5/ 3$ slope corresponding to a spiral advection of the tracer. Such a scaling law could thus be of geometric origin. As for the kinetic and potential energy, the ${ k}_{h}^{- 5/ 3} $ scaling law can be reproduced numerically and is enhanced when the background stratification profile is strongly variable, involving sharp jumps in potential vorticity such as those observed in situ. This raises the possibility of another plausible mechanism leading to a $- 5/ 3$ scaling law, namely surface-quasi-geostrophic (SQG)-like dynamics, although our set-up is more complex than the idealized SQG framework. Energy and enstrophy fluxes have been diagnosed in the numerical quasi-geostrophic simulations. The results emphasize a strong production of energy in the oceanic submesoscales range and a kinetic and potential energy flux from mesoscale to submesoscales range near the critical levels. Such horizontal submesoscale production, which is correlated to the accumulation of thin vertical scales inside the layering, thus has a significant slow dynamical component, well-captured by quasi-geostrophy.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Professor Bach Lien Hua passed away before the final revision of this paper was completed. This manuscript was however written by the first author.

References

Armi, L., Hebert, D., Oakey, N., Price, J. F., Richardson, P. I., Rossby, H. T. & Ruddick, B. 1989 Two years in a life of a Mediterranean salt lens. J. Phys. Oceanogr. 19, 354370.2.0.CO;2>CrossRefGoogle Scholar
Balmforth, N., Smith, S. G. L. & Young, W. R. 1998 Dynamics of interfaces and layers in a stratified turbulent fluid. J. Fluid Mech. 355, 329358.CrossRefGoogle Scholar
Balmforth, N., Smith, S. G. L. & Young, W. R. 2001 Disturbing vortices. J. Fluid Mech. 426, 95133.CrossRefGoogle Scholar
Biescas, B., Sallars, V., Pelegri, J. L., Machin, F., Carbonell, R., Buffett, G., Danobeitia, J. J. & Calahorrano, A. 2008 Imaging meddy finestructure using multichannel seismic reflection data. Geophys. Res. Lett. 35, L033971.Google Scholar
Blumen, W. 1978 Uniform potential vorticity flow. Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci. 35, 774783.Google Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.CrossRefGoogle Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zane, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Capet, X., Klein, P., Hua, B. L., Lapeyre, G. & McWilliams, J. C. 2008 Surface kinetic energy transfer in surface quasi-geostrophic flows. J. Fluid Mech. 604 (1), 165174.Google Scholar
Charney, J. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871095.Google Scholar
Dritschel, D. G. & de la Torre Juarez, M. 1996 The instability and breakdown of tall columnar vortices in a quasi-geostrophic fluid. J. Fluid Mech. 328, 129160.Google Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Geli, L., Cosquer, E., Hobbs, R. W., Klaeschen, D., Papenberg, C., Thomas, Y., Menesguen, C. & Hua, B. L. 2009 High resolution seismic imaging of the ocean structure using a small volume airgun source array in the Gulf of Cadiz. Geophys. Res. Lett. 36, L00D09.Google Scholar
Gent, P. & McWilliams, J. C. 1986 The instability of barotropic circular vortices. Geophys. Astrophys. Fluid Dyn. 35, 209233.Google Scholar
Gilbert, A. D. 1988 Spiral structures and spectra in two-dimensional turbulence. J. Fluid Mech. 193, 475497.CrossRefGoogle Scholar
Golub, G. H. & Van Loan, C. F. 1996 Matrix Computations, vol. 10. Johns Hopkins Studies in the Mathematical Sciences, The Johns Hopkins University Press.Google Scholar
Gonella, J. & Michon, D. 1988 Ondes internes profondes révélées par sismique réflexion au sein des masses d’eau en Atlantique-Est. C. R. Acad. Sci. Ser. II 306 (12), 781787.Google Scholar
Hamilton, K., Takahashi, Y. O. & Ohfuchi, W. 2008 Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res. 113, D18110.Google Scholar
Held, I. M., Pierrehumbert, R. T., Garner, S. T. & Swanson, K. L. 1995 Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 120.CrossRefGoogle Scholar
Hobbs, R. 2007 GO (geophysical oceanography): a new tool to understand the thermal structure and dynamics of oceans. European Union Newsletter 2, http://www.aapg.org/europe/newsletters/2007/06jun/06jun07europe.pdf.Google Scholar
Holbrook, W. S. & Fer, I. 2005 Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett. 32, L15604.CrossRefGoogle Scholar
Holbrook, W. S., Páramo, P., Pearse, S. & Schmitt, R. W. 2003 Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science 301, 821824.CrossRefGoogle Scholar
Hoskins, B. J., Draghici, I. & Davies, H. C. 1978 A new look at the $\omega $ -equation. Q. J. R. Meteorol. Soc. 104, 3138.Google Scholar
Hua, B. L. & Haidvogel, D. B. 1986 Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci. 43, 29232936.2.0.CO;2>CrossRefGoogle Scholar
Klein, P., Hua, B., Lapeyre, G., Capet, X., Gentil, S. L. & Sasaki, H. 2008 Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr. 38, 17481763.CrossRefGoogle Scholar
Lapeyre, G. & Klein, P. 2006 Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr. 36, 165176.CrossRefGoogle Scholar
Lindborg, E. 2005 The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett. 32, L01809.CrossRefGoogle Scholar
Lundgren, T. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25 (12), 21932203.Google Scholar
McIntyre, M. 1970 Diffusive destabilisation of the baroclinic circular vortex. Geophys. Fluid Dyn. 1, 1957.CrossRefGoogle Scholar
Ménesguen, C., Hua, B., Carton, X., Klingelhoefer, F., Schnürle, P. & Reichert, C. 2012 Arms winding around a meddy seen in seismic reflection data close to the Morocco coastline. Geophys. Res. Lett. 39, L05604.CrossRefGoogle Scholar
Ménesguen, C., Hua, B., Papenberg, C., Klaeschen, D., Geli, L. & Hobbs, R. 2009 Effect of bandwidth on seismic imaging of rotating stratified turbulence surrounding an anticyclonic eddy from field data and numerical simulations. Geophys. Res. Lett. 36, L00D05.Google Scholar
Molemaker, M. J., McWilliams, J. C. & Capet, X. 2010 Balanced and unbalanced routes to dissipation in an equilibrated eady flow. J. Fluid Mech. 654, 3563.Google Scholar
Nandi, P., Holbrook, W., Pearse, S., Paramo, P. & Schmitt, R. 2004 Seismic reflection imaging of water mass boundary in the Norwegian Sea. Geophys. Res. Lett. 31, L23311.Google Scholar
Naström, G. D. & Gage, K. S. 1985 A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42, 950960.Google Scholar
Nguyen, H. Y., Hua, B. L., Schopp, R. & Carton, X. 2012 Slow quasigeostrophic unstable modes of a lens vortex in a continuously stratified flow. Geophys. Astrophys. Fluid Dyn. 106 (3), 305319.CrossRefGoogle Scholar
Papenberg, C., Klaeschen, D., Krahmann, G. & Hobbs, R. W. 2010 Ocean temperature and salinity inverted from combined hydrographic and seismic data. Geophys. Res. Lett. 37, L04601 doi:10.1029/2009GL042115.Google Scholar
Pedlosky, J. 1996 Ocean Circulation Theory. Springer.Google Scholar
Pingree, R. D. & Le Cann, B. 1993 A shallow MEDDY (a SMEDDY) from the secondary mediterranean salinity maximum. J. Geophys. Res. 982, 2016920186.Google Scholar
Pinheiro, L. M., Song, H., Ruddick, B., Dubert, J., Ambar, I., Mustafa, K. & Bezerra, R. 2010 Detailed 2-D imaging of the mediterranean outflow and Meddies off W Iberia from multichannel seismic data. J. Mar. Syst. 79 (12), 89100.Google Scholar
Richardson, P., Bower, A. & Zenk, W. 2000 A census of Meddies tracked by floats. Prog. Oceanogr. 45, 209250.CrossRefGoogle Scholar
Riley, J. & Lindborg, E. 2008 Stratified turbulence: a possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 65, 24162424.Google Scholar
Ruddick, B. R. & Richards, K. J. 2003 Oceanic thermohaline intrusions: observations. Prog. Oceanogr. 56 (3–4), 499527.Google Scholar
Saffman, P. 1971 On the spectrum and decay of random two-dimensional vorticity distributions at large Reynolds number. Stud. Appl. Maths 50, 377383.CrossRefGoogle Scholar
Sallarès, V., Biescas, B., Buffett, G., Carbonell, R., Dañobeitia, J. J. & Pelegrí, J. L. 2009 Relative contribution of temperature and salinity to ocean acoustic reflectivity. Geophys. Res. Lett. 36, L00D06.Google Scholar
Samelson, R. M. & Paulson, C. A. 1988 Towed thermistor chain observations of fronts in the subtropical North Pacific. J. Geophys. Res.: Oceans 93 (C3), 22372246.Google Scholar
Smith, K. S. & Ferrari, R. 2009 The production and dissipation of compensated thermohaline variance by mesoscale stirring. J. Phys. Oceanogr. 39, 24772501.Google Scholar
Vallgren, A., Deusebio, E. & Lindborg, E. 2011 Possible explanation of the atmospheric kinetic and potential energy spectra. Phys. Rev. Lett. 107, 268501.CrossRefGoogle ScholarPubMed
Waite, M. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.CrossRefGoogle Scholar