Article contents
Latitudinal libration driven flows in triaxial ellipsoids
Published online by Cambridge University Press: 17 April 2015
Abstract
Motivated by understanding the liquid core dynamics of tidally deformed planets and moons, we present a study of incompressible flow driven by latitudinal libration within rigid triaxial ellipsoids. We first derive a laminar solution for the inviscid equations of motion under the assumption of uniform vorticity flow. This solution exhibits a resonance if the libration frequency matches the frequency of the spin-over inertial mode. Furthermore, we extend our model by introducing a reduced model of the effect of viscous Ekman layers in the limit of low Ekman number (Noir & Cébron, J. Fluid Mech., vol. 737, 2013, pp. 412–439). This theoretical approach is consistent with the results of Chan et al. (Phys. Earth Planet. Inter., vol. 187, 2011, pp. 404–415) and Zhang et al. (J. Fluid Mech., vol. 692, 2012, pp. 420–445) for spheroidal geometries. Our results are validated against systematic three-dimensional numerical simulations. In the second part of the paper, we present the first linear stability analysis of this uniform vorticity flow. To this end, we adopt different methods (Lifschitz & Hameiri, Phys. Fluids A, vol. 3, 1991, p. 2644; Gledzer & Ponomarev, Acad. Sci., USSR, Izv., Atmos. Ocean. Phys., vol. 13, 1977, pp. 565–569) that allow us to deduce upper and lower bounds for the growth rate of an instability. Our analysis shows that the uniform vorticity base flow is prone to inertial instabilities caused by a parametric resonance mechanism. This is confirmed by a set of direct numerical simulations. Applying our results to planetary settings, we find that neither a spin-over resonance nor an inertial instability can exist within the liquid core of the Moon, Io and Mercury.
- Type
- Papers
- Information
- Copyright
- © 2015 Cambridge University Press
References
A correction has been issued for this article:
- 19
- Cited by
Linked content
Please note a has been issued for this article.